Structure of Block Quantum Dynamical Semigroups and their Product Systems

Vijaya Kumar U

ISI Bengaluru
August 23, 2019
This is a joint work with B.V. Rajarama Bhat.

Introduction

Abbreviations:
CP
CB
UCP
UNCP
QDS
QMS
Completely positive Completely Bounded Unital Completely Positive Unital Normal Completely Positive Quantum Dynamical Semigroup Quantum Markov Semigroup.

Outline

(1) Introduction to completely positive maps and quantum dynamical semigroups
(2) Structure of block quantum dynamical semigroups

- Introduction
- Hilbert C^{*}-modules
- Structure of block QDS
(3) References

CP maps

Definitions
Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a C^{*}-algebra.
For $n \in \mathbb{N}, \quad M_{n}(\mathcal{A}) \subseteq M_{n}(\mathcal{B}(\mathcal{H})) \simeq \mathcal{B}\left(\mathcal{H}^{\oplus^{n}}\right)$.
Let \mathcal{A} and \mathcal{B} be unital C^{*}-algebras and let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a linear map. For $n \in \mathbb{N}$, define $\phi_{n}: M_{n}(\mathcal{A}) \rightarrow M_{n}(\mathcal{B})$ by

$$
\phi_{n}\left(\left[a_{i j}\right]_{i, j=1}^{n}\right)=\left[\phi\left(a_{i j}\right)\right]_{i, j=1}^{n}, \quad \text { for }\left[a_{i j}\right]_{i, j=1}^{n} \in M_{n}(\mathcal{A}) .
$$

$$
\mathcal{A} \otimes M_{n} \simeq M_{n}(\mathcal{A}) \quad \Longrightarrow \quad \phi_{n}=\phi \otimes I_{n}: \mathcal{A} \otimes M_{n} \rightarrow \mathcal{B} \otimes M_{n}
$$

ϕ is said to be n-positive if ϕ_{n} is positive.
ϕ is said to be completely positive (CP) if ϕ is n-positive for all $n \in \mathbb{N}$. ϕ is said to be completely bounded (CB) if $\sup _{n}\left\|\phi_{n}\right\|<\infty$.

CP maps

Basic theorems

Theorem (Stinespring's dilation for CP maps. 1955)

$$
\phi: \mathcal{A} \xrightarrow{C P} \mathcal{B}(\mathcal{H}) \Longrightarrow \exists(\pi, V, \mathcal{K}) \sim\left\{\begin{array}{l}
\mathcal{K}-\text { Hilbert space } \\
\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K}) \text { repn. } \\
V \in \mathcal{B}(\mathcal{H}, \mathcal{K})
\end{array}\right.
$$

such that

$$
\phi(a)=V^{*} \pi(a) V, \quad a \in \mathcal{A} .
$$

Such a triple (π, V, \mathcal{K}) is called a Stinespring's dilation for ϕ.

Quantum Dynamical Semigroups

Definition

Let $\mathbb{T}=\mathbb{R}_{+}$or \mathbb{Z}_{+}.

Definition

Let \mathcal{A} be a unital C^{*}-algebra. A family $\phi=\left(\phi_{t}\right)_{t \in \mathbb{T}}$ of CP maps on \mathcal{A} is said to be a quantum dynamical semigroup (QDS) or one-parameter CP-semigroup if
(1) $\phi_{s+t}=\phi_{s} \circ \phi_{t}$ for all $t \in \mathbb{T}$,
(2) $\phi_{0}(a)=a$ for all $a \in \mathcal{A}$,
(3) $\phi_{t}(\mathbf{1}) \leq \mathbf{1}$ for all $t \in \mathbb{T}$, (contractivity)
(9) The map $t \mapsto \phi_{t}(a)$ is continuous for all $a \in \mathcal{A}$. (strong continuity)

Quantum Dynamical Semigroups

Definition

Let $\mathbb{T}=\mathbb{R}_{+}$or \mathbb{Z}_{+}.

Definition

Let \mathcal{A} be a unital C^{*}-algebra. A family $\phi=\left(\phi_{t}\right)_{t \in \mathbb{T}}$ of CP maps on \mathcal{A} is said to be a quantum dynamical semigroup (QDS) or one-parameter CP-semigroup if
(1) $\phi_{s+t}=\phi_{s} \circ \phi_{t}$ for all $t \in \mathbb{T}$,
(2) $\phi_{0}(a)=a$ for all $a \in \mathcal{A}$,
(3) $\phi_{t}(\mathbf{1}) \leq \mathbf{1}$ for all $t \in \mathbb{T}$, (contractivity)
(9) The map $t \mapsto \phi_{t}(a)$ is continuous for all $a \in \mathcal{A}$. (strong continuity)

It is said to be conservative QDS or Quantum Markov semigroup (QMS) if ϕ_{t} is unital for all $t \in \mathbb{T}$.
If ϕ is a semigroup of CP maps on a von Neumann algebra \mathcal{A}, we assume every ϕ_{t} to be normal. (τ is normal $\Longleftrightarrow a_{\lambda} \uparrow a \Longrightarrow \tau\left(a_{\lambda}\right) \uparrow \tau(a)$)

Block maps

Introduction

Let \mathcal{A} be a unital C^{*}-algebra. Let $p \in \mathcal{A}$ be a projection. Set $p^{\prime}=\mathbf{1}-p$.

$$
x=\left(\begin{array}{cc}
p x p & p x p^{\prime} \tag{1}\\
p^{\prime} x p & p^{\prime} x p^{\prime}
\end{array}\right) \in\left(\begin{array}{cc}
p \mathcal{A} p & p \mathcal{A} p^{\prime} \\
p^{\prime} \mathcal{A} p & p^{\prime} \mathcal{A} p^{\prime}
\end{array}\right) .
$$

Definition

Let \mathcal{A} and \mathcal{B} be unital C^{*}-algebras. Let $p \in \mathcal{A}$ and $q \in \mathcal{B}$ be projections. We say that a map $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a block map (with respect to p and q) if Φ respects the above block decomposition. i.e., for all $x \in \mathcal{A}$ we have

$$
\Phi(x)=\left(\begin{array}{cc}
\Phi(p x p) & \Phi\left(p x p^{\prime}\right) \tag{2}\\
\Phi\left(p^{\prime} x p\right) & \Phi\left(p^{\prime} x p^{\prime}\right)
\end{array}\right) \in\left(\begin{array}{cc}
q \mathcal{B} q & q \mathcal{B} q^{\prime} \\
q^{\prime} \mathcal{B} q & q^{\prime} \mathcal{B} q^{\prime}
\end{array}\right) .
$$

Block maps

Introduction

If $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a block map, then we get:
$\phi_{11}: p \mathcal{A} p \rightarrow q \mathcal{B} q, \quad \phi_{12}: p \mathcal{A} p^{\prime} \rightarrow q \mathcal{B} q^{\prime}$,
$\phi_{21}: p^{\prime} \mathcal{A} p \rightarrow q^{\prime} \mathcal{B} q, \quad \phi_{22}: p^{\prime} \mathcal{A} p^{\prime} \rightarrow q^{\prime} \mathcal{B} q^{\prime}$.
So we write $\Phi=\left(\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right)$.

Block maps

Introduction

If $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ is a block map, then we get:
$\phi_{11}: p \mathcal{A} p \rightarrow q \mathcal{B} q, \quad \phi_{12}: p \mathcal{A} p^{\prime} \rightarrow q \mathcal{B} q^{\prime}$, $\phi_{21}: p^{\prime} \mathcal{A} p \rightarrow q^{\prime} \mathcal{B} q, \quad \phi_{22}: p^{\prime} \mathcal{A} p^{\prime} \rightarrow q^{\prime} \mathcal{B} q^{\prime}$.

So we write $\Phi=\left(\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right)$.
We will look at BLOCK CP MAPS and their SEMIGROUPS!

Block CP maps

Introduction

$$
\mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \ni\left(\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right) \geq 0 \Longleftrightarrow\left\{\begin{array}{l}
A, D \geq 0 \text { and } \\
B=A^{\frac{1}{2}} T D^{\frac{1}{2}} \text { for some contraction } T .
\end{array}\right.
$$

Block CP maps

Introduction

$$
\mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \ni\left(\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right) \geq 0 \Longleftrightarrow\left\{\begin{array}{l}
A, D \geq 0 \text { and } \\
B=A^{\frac{1}{2}} T D^{\frac{1}{2}} \text { for some contraction } T .
\end{array}\right.
$$

Suppose $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B})$ is a CP map, where \mathcal{A} is a unital C^{*}-algebra.
$\Phi=\left(\begin{array}{ll}\phi_{1} & \psi \\ \psi^{*} & \phi_{2}\end{array}\right)$ is block $\mathrm{CP} \Longrightarrow\left\{\begin{array}{l}\phi_{1}, \phi_{2} \text { are } \mathrm{CP} \text { and } \\ \psi \text { is } \mathrm{CB}, \text { where } \psi^{*}(a)=\psi\left(a^{*}\right)^{*}, a \in \mathcal{A} .\end{array}\right.$

Block CP maps

Introduction

$$
\mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \ni\left(\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right) \geq 0 \Longleftrightarrow\left\{\begin{array}{l}
A, D \geq 0 \text { and } \\
B=A^{\frac{1}{2}} T D^{\frac{1}{2}} \text { for some contraction } T .
\end{array}\right.
$$

Suppose $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B})$ is a CP map, where \mathcal{A} is a unital C^{*}-algebra.
$\Phi=\left(\begin{array}{ll}\phi_{1} & \psi \\ \psi^{*} & \phi_{2}\end{array}\right)$ is block $\mathrm{CP} \Longrightarrow\left\{\begin{array}{l}\phi_{1}, \phi_{2} \text { are } \mathrm{CP} \text { and } \\ \psi \text { is } \mathrm{CB}, \text { where } \psi^{*}(a)=\psi\left(a^{*}\right)^{*}, a \in \mathcal{A} .\end{array}\right.$

Stucture of block CP maps

Introduction

Theorem (Paulsen and Suen [PS85])

Let \mathcal{A} be a unital C^{*}-algebra. Suppose $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B}(\mathcal{H}))$ defined by $\Phi=\left(\begin{array}{cc}\phi & \psi \\ \psi^{*} & \phi\end{array}\right)$ is completely positive, and (\mathcal{K}, η, V) is a Stinespring representation for ϕ. Then there is a contraction $T: \mathcal{K} \rightarrow \mathcal{K}$ with $\eta(a) T=T \eta(a)$ for all $a \in \mathcal{A}$ such that $\psi(a)=V^{*} T \eta(a) V$ for all $a \in \mathcal{A}$.

Stucture of block CP maps

Introduction

Theorem (Paulsen and Suen [PS85])

Let \mathcal{A} be a unital C^{*}-algebra. Suppose $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B}(\mathcal{H}))$ defined by $\Phi=\left(\begin{array}{cc}\phi & \psi \\ \psi^{*} & \phi\end{array}\right)$ is completely positive, and (\mathcal{K}, η, V) is a Stinespring representation for ϕ. Then there is a contraction $T: \mathcal{K} \rightarrow \mathcal{K}$ with $\eta(a) T=T \eta(a)$ for all $a \in \mathcal{A}$ such that $\psi(a)=V^{*} T \eta(a) V$ for all $a \in \mathcal{A}$.

Theorem

Let \mathcal{A} be a unital C^{*}-algebra. Suppose $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B}(\mathcal{H}))$ defined by $\Phi=\left(\begin{array}{ll}\phi_{1} & \psi \\ \psi^{*} & \phi_{2}\end{array}\right)$ is completely positive, and $\left(\mathcal{K}_{i}, \eta_{i}, V_{i}\right)$ is a Stinespring representation for $\phi_{i}, i=1,2$. Then there is a contraction $T: \mathcal{K}_{2} \rightarrow \mathcal{K}_{1}$ with $\eta_{1}(a) T=T \eta_{2}(a)$ for all $a \in \mathcal{A}$ such that $\psi(a)=V_{1}^{*} T \eta_{2}(a) V_{2}$ for all $a \in \mathcal{A}$.

Bhat and Mukherjee studied semigroups of block $C P$ mas on $\mathcal{B}(\mathcal{H} \oplus \mathcal{K})$.

Hilbert C^{*}-modules

Introduction
Let \mathcal{A} and \mathcal{B} be C^{*}-algebras and $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP map. What is the structure theorem analogues to Stinespring's theorem?

Hilbert C^{*}-modules

Introduction

Let \mathcal{A} and \mathcal{B} be C^{*}-algebras and $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP map. What is the structure theorem analogues to Stinespring's theorem?

Definition (Hilbert C^{*}-module)

E-complex vector space, \mathcal{B} - a C^{*}-algebra
E-Hilbert \mathcal{B}-module $\Longleftrightarrow\left\{\begin{array}{l}E \text { is a right } \mathcal{B} \text {-module, } \\ E \text { has a } \mathcal{B} \text {-valued inner product }\langle\cdot, \cdot\rangle, \\ E \text { is complete in the norm: }\|x\|=\sqrt{\|\langle x, x\rangle\|} .\end{array}\right.$

Cauchy-Schwarz inequality

E - semi inner product \mathcal{B}-module,

$$
\langle x, y\rangle\langle y, x\rangle \leq\|\langle y, y\rangle\|\langle x, x\rangle, \quad \text { for all } x, y \in E .
$$

Consider $N=\{x \in E:\langle x, x\rangle=0\}$ is a \mathcal{B}-submodule. Now E / N is a \mathcal{B}-mudule with the natural inner product.

Hilbert C^{*}-modules

Introduction

Significant difference from Hilbert spaces?

 self-duality, adjointability, complementability
Hilbert C^{*}-modules

Introduction

Significant difference from Hilbert spaces?

 self-duality, adjointability, complementability
Definition (two-sided)

Let \mathcal{A} and \mathcal{B} be C^{*}-algebras. A Hilbert \mathcal{B}-module E with a non-degenerate representation $\pi: \mathcal{A} \rightarrow \mathcal{B}^{a}(E)$ is said to be a Hilbert $\mathcal{A}-\mathcal{B}$-module or \mathcal{A} - \mathcal{B}-correspondence. (π is non-degenerate if $\overline{\operatorname{span}} \pi(\mathcal{A}) E=E$)

Hilbert C^{*}-modules

Introduction

Definition (tensor product)

Let E be a Hilbert \mathcal{A} - \mathcal{B}-module and F be a Hilbert \mathcal{B} - \mathcal{C}-module. Then

$$
\left\langle x \otimes y, x^{\prime} \otimes y^{\prime}\right\rangle=\left\langle y,\left\langle x, x^{\prime}\right\rangle y^{\prime}\right\rangle
$$

defines a semi inner product on (the algebraic tensor product) $E \otimes F$ with the natural right \mathcal{C}-action. Let

$$
N=\{w \in E \otimes F:\langle w, w\rangle=0\} .
$$

The interior tensor product of E and F is defined as

$$
E \odot F=\overline{E \otimes F / N}
$$

Note that $E \odot F$ is a Hilbert \mathcal{A} - \mathcal{C}-module with the natural left action of \mathcal{A}.

Hilbert C^{*}-modules

Introduction
Let E be a Hilbert \mathcal{A} - \mathcal{B}-module. (Notation: ${ }_{\mathcal{A}} E_{\mathcal{B}}$)
Let $\mathcal{B} \subseteq \mathcal{B}(\mathcal{G}),\left(\mathcal{G}\right.$ can be viewed as $\left.\mathcal{B} \mathcal{G}_{\mathbb{C}}\right)$.

$$
\mathcal{A} \mathcal{H}_{\mathbb{C}}:={ }_{\mathcal{A}} E_{\mathcal{B}} \odot{ }_{\mathcal{B}} \mathcal{G}_{\mathbb{C}}
$$

That is, \mathcal{H} is a Hil. sp. with a rep. $\rho: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.
For $x \in E$ let $L_{x}: \mathcal{G} \rightarrow \mathcal{H}$ be defined by $L_{x}(g)=x \odot g$, then $L_{x} \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ with $L_{x}^{*}: x^{\prime} \odot g \mapsto\left\langle x, x^{\prime}\right\rangle g$. Define

$$
\eta: E \rightarrow \mathcal{B}(\mathcal{G}, \mathcal{H}) \quad \text { by } \eta(x)=L_{x} .
$$

Then

$$
L_{x}^{*} L_{y}=\langle x, y\rangle \in \mathcal{B} \subseteq \mathcal{B}(\mathcal{G}) \quad \text { and } \quad L_{a x b}=\rho(a) L_{x} b
$$

$$
\mathcal{A}_{\mathcal{B}} \subseteq{ }_{\mathcal{B}(\mathcal{H})} \mathcal{B}(\mathcal{G}, \mathcal{H})_{\mathcal{B}(\mathcal{G})} .
$$

Hilbert C^{*}-modules

Introduction

Definition

Let \mathcal{B} be a von Neumann algebra on a Hilbert space \mathcal{G}. A Hilbert \mathcal{B}-module E is a von Neumann \mathcal{B}-module if E is strongly closed in $\mathcal{B}(\mathcal{G}, E \odot \mathcal{G})$.

Definition

Let \mathcal{A} be a von Neumann algebra. A von Neumann \mathcal{B}-module E is said to be von Neumann $\mathcal{A}-\mathcal{B}$-module if it is a Hilbert \mathcal{A} - \mathcal{B}-module such that the representation $\rho: \mathcal{A} \rightarrow \mathcal{B}(E \odot \mathcal{G})$ is normal.

Lemma

Let \mathcal{A} be a C^{*}-algebra and let \mathcal{B} be a von Neumann algebra on a Hilbert space \mathcal{G}. Let E be a Hilbert \mathcal{A} - \mathcal{B}-module. Then the operations $x \mapsto x b$, $x \mapsto\langle y, x\rangle$ and $x \mapsto a x$ are strongly continuous. Hence \bar{E}^{s} is a Hilbert $\mathcal{A}-\mathcal{B}$-module and a von Neumann \mathcal{B}-module.

Hilbert C^{*}-modules

Introduction

Results

If E is a von Neumann \mathcal{B}-module, then $\mathcal{B}^{a}(E)$ is a von Neumann subalgebra of $\mathcal{B}(E \odot \mathcal{G})$. von Neumann modules are self-dual and hence any bounded right linear map between von Neumann module is adjointable. If F is avon Nuemann submodule of E then there exists a projection $p\left(p=p^{2}=p^{*}\right)$ in $\mathcal{B}^{a}(E)$ onto F. (complementary)

Structure of CP maps

Hilbert C^{*}-modules

GNS-construction (Paschke [7])

Let \mathcal{A} and \mathcal{B} be unital C^{*}-algebras and let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP map. Then, there exists a pair (E, ξ) of a Hilbert Hilbert \mathcal{A} - \mathcal{B}-module E and a cyclic vector $\xi \in E$ (i.e., $E=\overline{\operatorname{span}}(\mathcal{A} \xi \mathcal{B}))$ such that

$$
\phi(a)=\langle\xi, a \xi\rangle, \quad a \in \mathcal{A} .
$$

The pair (E, ξ) is called the GNS-construction of ϕ and E is called the GNS-module for ϕ. Obviously ϕ is unital if and only if $\langle\xi, \xi\rangle=\mathbf{1}$.

Structure of CP maps

Hilbert C^{*}-modules

GNS-construction (Paschke [7])

Let \mathcal{A} and \mathcal{B} be unital C^{*}-algebras and let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP map. Then, there exists a pair (E, ξ) of a Hilbert Hilbert \mathcal{A} - \mathcal{B}-module E and a cyclic vector $\xi \in E$ (i.e., $E=\overline{\operatorname{span}}(\mathcal{A} \xi \mathcal{B})$) such that

$$
\phi(a)=\langle\xi, a \xi\rangle, \quad a \in \mathcal{A} .
$$

The pair (E, ξ) is called the GNS-construction of ϕ and E is called the GNS-module for ϕ. Obviously ϕ is unital if and only if $\langle\xi, \xi\rangle=\mathbf{1}$.

Definition

Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a CP map. Let E be a Hilbert \mathcal{A} - \mathcal{B}-module and $\xi \in E$, We call (E, ξ) as a GNS-representation for ϕ if $\phi(a)=\langle\xi, a \xi\rangle$ for all $a \in \mathcal{A}$. It is said to be minimal if $E=\overline{\operatorname{span}}(\mathcal{A} \xi \mathcal{B})$. (uniqueness!)

Hilbert C^{*}-modules

Introduction

Proposition 1

If E is the GNS-module of a normal completely positive $\operatorname{map} \phi: \mathcal{A} \rightarrow \mathcal{B}$ between von Neumann algebras, then \bar{E}^{s} is a von Neumann \mathcal{A} - \mathcal{B}-module.

Proposition 2

Let E be a von Neumann \mathcal{A} - \mathcal{B}-module. Let $\pi: \mathcal{B} \rightarrow \mathcal{B}(\mathcal{G})$ be a normal representation. Then $\rho: \mathcal{A} \rightarrow \mathcal{B}(E \odot G)$ is normal.

Proposition 3

If E be a von Neumann \mathcal{A} - \mathcal{B}-module and let F be a von Neumann \mathcal{B} - \mathcal{C}-module where \mathcal{C} acts on a Hilbert space \mathcal{G}. Then the strong closure $E \bar{\odot}^{s} F$ of the tensor product $E \odot F$ in $\mathcal{B}(\mathcal{G}, E \odot F \odot \mathcal{G})$, is a von Neumann \mathcal{A} - \mathcal{C}-module.

Hilbert C^{*}-modules

Introduction

Definition (conventions)

Due to Propositions 1, 2, 3 we make the following conventions:
(1) Whenever \mathcal{B} is a von Neumann algebra and $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a CP map, by GNS-module we always mean \bar{E}^{s}, where E is the GNS-module, constructed above.
(2) If E and F are von Neumann modules, by tensor product of E and F we mean the strong closure $\overline{E \odot F^{s}}$ of $E \odot F$ and we still write $E \odot F$.

Hilbert C^{*}-modules

$M_{2}(\mathcal{B})-M_{2}(\mathcal{B}) \rightsquigarrow \mathcal{B}-\mathcal{B}$

Observation

Let F be a Hilbert(von Neumann) $M_{2}(\mathcal{B})-M_{2}(\mathcal{B})$-module. Then F can be treated as a Hilbert(von Neumann) \mathcal{B} - \mathcal{B}-module with right and left \mathcal{B}-module action on F given by

$$
w b:=w\left(\begin{array}{ll}
b & 0 \tag{3}\\
0 & b
\end{array}\right), \quad b w:=\left(\begin{array}{cc}
b & 0 \\
0 & b
\end{array}\right) w, \quad w \in F, b \in \mathcal{B}
$$

and with the \mathcal{B}-valued semi-inner product $\langle\cdot, \cdot\rangle_{\mathcal{B}}$ on F given by

$$
\begin{equation*}
\langle z, w\rangle_{\mathcal{B}}:=\sum_{i, j=1}^{2}\langle z, w\rangle_{i, j}, z, w \in F . \tag{4}
\end{equation*}
$$

(Indeed, we consider $\overline{F / N}$, where $N=\left\{w:\langle w, w\rangle_{\mathcal{B}}=0\right\}$, and we still write F instead of $\overline{F / N) . ~}$

Stucture of block CP maps

Theorem (for a single block CP map)

Let \mathcal{A} be a unital C^{*}-algebra and \mathcal{B} be a von Neumann algebra on a Hilbert space \mathcal{G}. Let $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B})$ be the block CP map $\Phi=\left(\begin{array}{cc}\phi_{1} & \psi \\ \psi^{*} & \phi_{2}\end{array}\right)$, and let $\left(E_{i}, \xi_{i}\right)$ be the GNS-construction for $\phi_{i}, i=1,2$. Then there is a unique adjointable bilinear contraction $T: E_{2} \rightarrow E_{1}$ such that $\psi(a)=\left\langle\xi_{1}, T a \xi_{2}\right\rangle$ for all $a \in \mathcal{A}$.

Stucture of block CP maps

Proof.

Let (E, ξ) be the GNS-construction for Φ. Let $\hat{E}_{i}=\mathbb{E}_{i i} E, i=1,2$, (\mathcal{B} - \mathcal{B}-modules) where $\mathbb{E}_{i j}=\mathbf{1} \odot E_{i j}$. $\left(\hat{E}_{i}, \mathbb{E}_{i i} \xi \mathbb{E}_{i i}\right)$-GNS for $\phi_{i}, i=1,2$. Define $U: \hat{E}_{2} \rightarrow \hat{E}_{1}$ by $U x=\mathbb{E}_{12} x$ (U is a bilinear unitary). Let $V_{i}: E_{i} \rightarrow \hat{E}_{i}$ by $V_{i}\left(a \xi_{i} b\right)=a \mathbb{E}_{i i} \xi \mathbb{E}_{i i} b$. Take $T=V_{1}^{*} U V_{2}$.
$\left\langle\xi_{1}, T a \xi_{2}\right\rangle=\left\langle\xi_{1}, V_{1}^{*} U V_{2} a \xi_{2}\right\rangle=\left\langle V_{1} \xi_{1}, U V_{2} \xi_{2}\right\rangle$
$=\left\langle\mathbb{E}_{11} \xi \mathbb{E}_{11}, a \mathbb{E}_{12} \mathbb{E}_{22} \xi \mathbb{E}_{22}\right\rangle=\left\langle\xi \mathbb{E}_{11},\left(\begin{array}{cc}0 & a \\ 0 & 0\end{array}\right) \xi \mathbb{E}_{22}\right\rangle$
$=\sum_{i, j=1}^{2}\left(\mathbb{E}_{11}\left\langle\xi,\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \xi\right\rangle \mathbb{E}_{22}\right)_{i, j}=\sum_{i, j=1}^{2}\left(\mathbb{E}_{11}\left(\begin{array}{cc}0 & \psi(a) \\ 0 & 0\end{array}\right) \mathbb{E}_{22}\right)$
$=\sum_{i, j=1}^{2}\left(\begin{array}{cc}0 & \psi(a) \\ 0 & 0\end{array}\right)_{i, j}=\psi(a)$.

Stucture of block CP maps

 von Neumann algebras
Example

Let $\mathcal{A}=\mathcal{B}=C([0,1])$, Let

$$
\begin{equation*}
h_{1}(t)=t, \quad h_{2}(t)=1 \quad \text { for } t \in[0,1] . \tag{5}
\end{equation*}
$$

Consider the CP map $\Phi: M_{2}(\mathcal{A}) \rightarrow M_{2}(\mathcal{B})$ defined by
$\Phi\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)=\left(\begin{array}{cc}h_{1}^{*} & 0 \\ 0 & h_{2}^{*}\end{array}\right)\left(\begin{array}{cc}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)\left(\begin{array}{cc}h_{1} & 0 \\ 0 & h_{2}\end{array}\right)=\left(\begin{array}{l}h_{1}^{*} f_{11} h_{1} \\ h_{2}^{*} f_{21} h_{1} \\ h_{2}^{*} f_{12} f_{22} h_{2}\end{array}\right)$
Note that $E_{1}=\{f \in C([0,1]): f(0)=0\} \subseteq C([0,1])$ and $E_{2}=C([0,1])$.
There is no bilinear adjointable contraction $T: E_{2} \rightarrow E_{1}$ such that $\left\langle h_{1}, f h_{2}\right\rangle=\left\langle h_{1}, T f h_{2}\right\rangle$ for all $f \in C([0,1])$.

Hilbert C^{*}-modules

Product Systems

Definition

Let \mathcal{B} be a C^{*}-algebra. An inclusion system (E, β) is a family $E=\left(E_{t}\right)_{t \in \mathbb{T}}$ of Hilbert \mathcal{B} - \mathcal{B}-modules with $E_{0}=\mathcal{B}$ and a family $\beta=\left(\beta_{s, t}\right)_{s, t \in \mathbb{T}}$ of two-sided isometries $\beta_{s, t}: E_{s+t} \rightarrow E_{s} \odot E_{t}$ such that, for all $r, s, t \in \mathbb{T}$,

$$
\left(\beta_{r, s} \odot \mathrm{id}_{E_{t}}\right) \beta_{r+s, t}=\left(\mathrm{id}_{E_{r}} \odot \beta_{s, t}\right) \beta_{r, s+t}
$$

It is said to be a product system if every $\beta_{s t}$ is unitary.

$$
\begin{gathered}
E_{r+s+t} \xrightarrow{\beta_{r+s, t}} E_{r+s} \odot E_{t} \\
\quad \stackrel{{ }^{\beta_{r, s+t}}}{\beta_{r, s} \odot \mathrm{id}_{E_{t}}} \\
E_{r} \odot E_{s+t} \xrightarrow{\mathrm{id}_{E_{r}} \odot \beta_{s, t}} E_{r} \odot E_{s} \odot E_{t}
\end{gathered}
$$

Hilbert C^{*}-modules

Product Systems

Remark

If \mathcal{B} is von Neumann algebra in the above definition, then we consider incusion system of von Neumann \mathcal{B} - \mathcal{B}-modules.

Definition

Let (E, β) be an inclusion system. A family $\xi^{\odot}=\left(\xi_{t}\right)_{t \in \mathbb{T}}$ of vectors $\xi_{t} \in E_{t}$ is called a unit for the inclusion system, if $\beta_{s, t}\left(\xi_{s+t}\right)=\xi_{s} \odot \xi_{t}$. \mathbf{A} unit is called unital, if $\left\langle\xi_{t}, \xi_{t}\right\rangle=1$ for all $t \in \mathbb{T}$. A unit is called generating, if E_{t} is spanned by images of elements $b_{n} \xi_{t_{n}} \odot \cdots \odot b_{1} \xi_{t_{1}} b_{0}$ ($t_{i} \in \mathbb{T}, \sum t_{i}=t, b_{i} \in \mathcal{B}$) under successive applications of appropriate mappings id $\odot \beta_{s, s^{\prime}}^{*} \odot$ id.

Hilbert C^{*}-modules

Product Systems

Observation

Suppose (E, β) an inclusion system with a unit (unital) ξ^{\odot}. Consider $\phi_{t}: \mathcal{B} \rightarrow \mathcal{B}$ defined by

$$
\phi_{t}(b)=\left\langle\xi_{t}, b \xi_{t}\right\rangle \text { for } b \in \mathcal{B}
$$

Then as $\beta_{s, t}$'s are two-sided isometries and ξ^{\odot} is a unit, for $b \in \mathcal{B}$ we have

$$
\begin{aligned}
\phi_{t} \circ \phi_{s}(b) & =\phi_{t}\left(\left\langle\xi_{s}, b \xi_{s}\right\rangle\right)=\left\langle\xi_{t},\left\langle\xi_{s}, b \xi_{s}\right\rangle \xi_{t}\right\rangle \\
& =\left\langle\xi_{s} \odot \xi_{t}, b\left(\xi_{s} \odot \xi_{t}\right)\right\rangle=\left\langle\xi_{t+s}, b \xi_{t+s}\right\rangle \\
& =\phi_{t+s}(b) .
\end{aligned}
$$

That is, $\left(\phi_{t}\right)_{t \in \mathbb{T}}$ is a QDS (QMS).
Converse?

Hilbert C^{*}-modules

Product Systems

Observation

Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ and $\psi: \mathcal{B} \rightarrow \mathcal{C}$ be CP maps

$$
\begin{gathered}
\phi \rightsquigarrow(E, \xi), \quad \psi \rightsquigarrow(F, \zeta), \quad \psi \circ \phi \rightsquigarrow(K, \kappa) \\
\psi \circ \phi(a)=\psi(\langle\xi, a \xi\rangle)=\langle\zeta,\langle\xi, a \xi\rangle \zeta\rangle=\langle\xi \odot \zeta, a \xi \odot \zeta\rangle .
\end{gathered}
$$

$$
(\psi \circ \phi \rightsquigarrow(E \odot F, \xi \odot \zeta)) \quad(\text { need not be minimal })
$$

Thus $\kappa \mapsto \xi \odot \zeta$ extends to a unique two-sided isometry $K \rightarrow E \odot F$.
So $K \hookrightarrow E \odot F ; \quad K=\overline{\operatorname{span}}(\mathcal{A} \xi \odot \zeta \mathcal{C})$;
$E \odot F=\overline{\operatorname{span}}(\mathcal{A} \xi \mathcal{B} \odot \mathcal{B} \zeta \mathcal{C})=\overline{\operatorname{span}}(\mathcal{A} \xi \odot \mathcal{B} \zeta \mathcal{C})=\overline{\operatorname{span}}(\mathcal{A} \xi \mathcal{B} \odot \zeta \mathcal{C})$.
Stinespring representation?

Hilbert C^{*}-modules

Product Systems

Observation

Let $\phi=\left(\phi_{t}\right)_{t \in \mathbb{T}}$ be a QDS on a unital C^{*}-algebra \mathcal{B}.
Let $\left(E_{t}, \xi_{t}\right)$ be the GNS-construction for ϕ_{t}.
(ξ_{t}-cyclic in E_{t} such that $\phi_{t}(b)=\left\langle\xi_{t}, b \xi_{t}\right\rangle, E_{0}=\mathcal{B}$ and $\xi_{0}=1$.) Define

$$
\beta_{s, t}: E_{s+t} \rightarrow E_{s} \odot E_{t}: \quad \xi_{t+s} \mapsto \xi_{s} \odot \xi_{t}
$$

Then $\beta_{s, t}$'s are two-sided isometries. Now

$$
\begin{aligned}
\left(\beta_{r, s} \odot I_{E_{t}}\right) \beta_{r+s, t}\left(\xi_{r+s+t}\right) & =\left(\beta_{r, s} \odot I_{E_{t}}\right)\left(\xi_{r+s} \odot \xi_{t}\right)=\left(\xi_{r} \odot \xi_{s}\right) \odot \xi_{t} \\
& =\xi_{r} \odot\left(\xi_{s} \odot \xi_{t}\right)=\left(I_{E_{r}} \odot \beta_{s, t}\right)\left(\xi_{r} \odot \xi_{s+t}\right) \\
& =\left(I_{E_{r}} \odot \beta_{s, t}\right) \beta_{r, s+t}\left(\xi_{r+s+t}\right)
\end{aligned}
$$

shows that (E, β) is an inclusion system of Hilbert \mathcal{B} - \mathcal{B}-module. It is obvious to see that $\xi^{\odot}=\left(\xi_{t}\right)$ is a generating unit for (E, β).

Hilbert C^{*}-modules

Product Systems and Morphisms

Definition

For a QDS $\phi=\left(\phi_{t}\right)_{t \geq 0}$ on \mathcal{B}, the inclusion system with the generating unit $\left(E, \beta, \xi^{\odot}\right)$ given in the previous observation is called the inclusion system associated to ϕ.

Definition

Let (E, β) and (F, γ) be two inclusion systems. Let $T=\left(T_{t}\right)_{t \in \mathbb{T}}$ be a family of two-sided (bilinear) maps $T_{t}: E_{t} \rightarrow F_{t}$, satisfying $\left\|T_{t}\right\| \leq e^{t k}$ for some $k \in \mathbb{R}$. Then T is said to be a morphism or a weak morphism from (E, β) to (F, γ) if $\gamma_{s, t}$'s are adjointable and

$$
\begin{equation*}
T_{s+t}=\gamma_{s, t}^{*}\left(T_{s} \odot T_{t}\right) \beta_{s, t} \text { for all } s, t \in \mathbb{T} \tag{6}
\end{equation*}
$$

It is said to be a strong morphism if

$$
\gamma_{s, t} T_{s+t}=\left(T_{s} \odot T_{t}\right) \beta_{s, t} \text { for all } s, t \in \mathbb{T} .
$$

Hilbert C^{*}-modules

Product Systems: morphism

$$
T_{t}: E_{t} \rightarrow F_{t}, \quad t \geq 0
$$

weak

strong

$$
\begin{array}{cc}
E_{s+t} \xrightarrow{T_{s+t}} F_{s+t} & E_{s+t} \xrightarrow{T_{s+t}} F_{s+t} \\
\stackrel{{ }^{2}}{ } \beta_{s, t} & \gamma_{s, t}^{*} \uparrow \\
E_{s} \odot E_{t} \xrightarrow{T_{s} \odot T_{t}} F_{s} \odot F_{t} & E_{s} \odot E_{t} \xrightarrow{\beta_{s} \odot T_{t}} F_{s} \odot F_{t}
\end{array}
$$

Stucture of block CP maps

Problem

Let \mathcal{A}, \mathcal{B} be unital C^{*}-algebras and let $p \in \mathcal{A}, q \in \mathcal{B}$ be projections. Let $\Phi=\left(\begin{array}{ll}\phi_{1} & \psi \\ \psi^{*} & \phi_{2}\end{array}\right)$ be a block CP map with respect to p and q. Let $\left(E_{i}, \xi_{i}\right)$ be GNS-representation of $\phi_{i}, i=1,2$. Can we prove a theorem similar to the above theorem ? or What is the structure of ψ in terms of $\left(E_{i}, \xi_{i}\right)$?

Stucture of block QDS

Lemma

Let \mathcal{B} be a unital C^{*}-algebra. Given two inclusion systems $\left(E^{i}, \beta^{i}, \xi^{i}\right)$ associated to the $C P$ semigroups $\phi^{i}=\left(\phi_{t}^{i}\right), i=1,2$ on \mathcal{B} and a contractive morphism $T: E^{2} \rightarrow E^{1}$, there is a block $C P$ semigroup $\Phi=\left(\Phi_{t}\right)_{t \geq 0}$ on $M_{2}(\mathcal{B})$ such that $\Phi_{t}=\left(\begin{array}{ll}\phi_{t}^{1} & \psi_{t} \\ \psi_{t}^{*} & \phi_{t}^{2}\end{array}\right)$ and $\psi_{t}(a)=\left\langle\xi_{t}^{1}, T_{t}\left(a \xi_{t}^{2}\right)\right\rangle$.

Stucture of block QDS

Proof.

Let $\Phi_{t}:=\left(\begin{array}{ll}\phi_{t}^{1} & \psi_{t} \\ \psi_{t}^{*} & \phi_{t}^{2}\end{array}\right)$, where $\psi_{t}(a):=\left\langle\xi_{t}^{1}, T_{t}\left(a \xi_{t}^{2}\right)\right\rangle$. Then ϕ_{t} is CP.
Consider

$$
\begin{aligned}
\Phi_{s} \circ \Phi_{t}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\Phi_{s}\left(\begin{array}{cc}
\phi_{t}^{1}(a) & \psi_{t}(b) \\
\psi_{t}^{*}(c) & \phi_{t}^{2}(d)
\end{array}\right)=\left(\begin{array}{cc}
\phi_{s+t}^{1}(a) & \psi_{s}\left(\psi_{t}(b)\right) \\
\psi_{s}^{*}\left(\psi_{t}^{*}(c)\right) & \phi_{s+t}^{2}(d)
\end{array}\right) . \\
\begin{aligned}
\psi_{s}\left(\psi_{t}(b)\right) & =\left\langle\xi_{s}^{1}, T_{s} \psi_{t}(b) \xi_{s}^{2}\right\rangle=\left\langle\xi_{s}^{1}, \psi_{t}(b) T_{s} \xi_{s}^{2}\right\rangle=\left\langle\xi_{s}^{1},\left\langle\xi_{t}^{1}, T_{t} b \xi_{t}^{2}\right\rangle T_{s} \xi_{s}^{2}\right\rangle \\
& =\left\langle\xi_{t}^{1} \odot \xi_{s}^{1}, T_{t} b \xi_{t}^{2} \odot T_{s} \xi_{s}^{2}\right\rangle=\left\langle\xi_{t}^{1} \odot \xi_{s}^{1}, b\left(T_{t} \odot T_{s}\right)\left(\xi_{t}^{2} \odot \xi_{s}^{2}\right)\right\rangle \\
& =\left\langle\beta_{t, s}^{1}\left(\xi_{t+s}^{1}\right), b\left(T_{t} \odot T_{s}\right) \beta_{t, s}^{2}\left(\xi_{t, s}^{2}\right)\right\rangle \\
& =\left\langle\left(\xi_{t+s}^{1}\right), b \beta_{t, s}^{1 *}\left(T_{t} \odot T_{s}\right) \beta_{t, s}^{2}\left(\xi_{t, s}^{2}\right)\right\rangle \\
& =\left\langle\xi_{t+s}^{1}, b T_{t+s}^{2} \xi_{t+s}^{2}\right\rangle \\
& =\psi_{t+s}(b) .
\end{aligned} .
\end{aligned}
$$

Stucture of block QDS

> Theorem (for a block QDS on a vN -alg \mathcal{B})
> Let $\Phi_{t}=\left(\begin{array}{ll}\phi_{t}^{1} & \psi_{t} \\ \psi_{t}^{*} & \phi_{t}^{2}\end{array}\right): M_{2}(\mathcal{B}) \rightarrow M_{2}(\mathcal{B})$ and $\Phi=\left(\Phi_{t}\right)_{t \geq 0}$ be a semigroup (on $M_{2}(\mathcal{B})$) of block normal CP maps. Then there is a unique contractive morphism $T: E^{2} \rightarrow E^{1}$ such that $\psi_{t}(a)=\left\langle\xi_{t}^{1}, T_{t}\left(a \xi_{t}^{2}\right)\right\rangle$ for all $a \in \mathcal{B}$, $t \geq 0$, where $\left(E^{i}, \beta^{i}, \xi^{\odot i}\right)$, is the inclusion system associated to $\phi^{i}, i=1,2$.

Proof.

For all $t \geq 0$ we have $T_{t}: E_{2} \rightarrow E_{1}, \psi_{t}(a)=\left\langle\xi_{t}^{1}, T_{t}\left(a \xi_{t}^{2}\right)\right\rangle, \forall a \in \mathcal{A}$.

References I

B. B. Rajarama Bhat and Vijaya Kumar U: Structure of block quantum dynamical semigroups and their product systems. Preprint: https://arxiv.org/pdf/1908.04098.pdf
\& V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 2002.
W. Arveson. Noncommutative dynamics and E-semigroups. Springer Monographs in Math.(2003).

E E.C Lance. Hilbert C^{*}-modules. A toolkit for operator algebraists. London Math. Soc. Lec. Note Series vol. 210, Cambridge Univ. Press (1995).
R.V.R. Bhat and M. Skeide. Tensor product systems of Hilbert modules and dilations of completely positive semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Topics 3(4), 519-575 (2000).

References II

E B.V.R. Bhat and M. Mukherjee. Inclusion systems and amalgamated products of product systems.Infin. Dimens. Anal. Quantum Probab. Relat. Topics 13(1), 1-26 (2010).
目 W.L. Paschke. Inner product modules over B^{*}-algebras. Trans. Amer. Math. Soc. 182, 443-468 (1973).
國 Vern I. Paulsen and Ching Yun Suen. Commutant representations of completely bounded maps, J. Operator Theory, 13(1):87-101, 1985.
(1) W. F. Stinespring. Positive functions on C^{*}-algebras. Proc. Amer. Math. Soc., 6:211-216, 1955.

THANK YOU

