Structure of Block Quantum Dynamical Semigroups and their Product Systems

Vijaya Kumar U

ISI Bengaluru

August 23, 2019

This is a joint work with B.V. Rajarama Bhat.

Vijaya Kumar U (ISIBC)

August 23, 2019 1 / 37

Introduction

Abbreviations:

CP	Completely positive
CB	Completely Bounded
UCP	Unital Completely Positive
UNCP	Unital Normal Completely Positive
QDS	Quantum Dynamical Semigroup
QMS	Quantum Markov Semigroup.

Outline

- Introduction to completely positive maps and quantum dynamical semigroups
- Structure of block quantum dynamical semigroups
 - Introduction
 - Hilbert C^* -modules
 - Structure of block QDS

イロト イボト イヨト イヨト

CP maps

Definitions

Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a C^* -algebra.

For $n \in \mathbb{N}$, $M_n(\mathcal{A}) \subseteq M_n(\mathcal{B}(\mathcal{H})) \simeq \mathcal{B}(\mathcal{H}^{\oplus^n})$.

Let \mathcal{A} and \mathcal{B} be unital C^* -algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be a linear map. For $n \in \mathbb{N}$, define $\phi_n : M_n(\mathcal{A}) \to M_n(\mathcal{B})$ by

 $\phi_n([a_{ij}]_{i,j=1}^n) = [\phi(a_{ij})]_{i,j=1}^n, \text{ for } [a_{ij}]_{i,j=1}^n \in M_n(\mathcal{A}).$

 $\mathcal{A} \otimes M_n \simeq M_n(\mathcal{A}) \implies \phi_n = \phi \otimes I_n : \mathcal{A} \otimes M_n \to \mathcal{B} \otimes M_n.$

 ϕ is said to be *n*-positive if ϕ_n is positive.

 ϕ is said to be completely positive (CP) if ϕ is *n*-positive for all $n \in \mathbb{N}$. ϕ is said to be completely bounded (CB) if $sup_n \|\phi_n\| < \infty$.

Vijaya Kumar U (ISIBC)

CP maps Basic theorems

Theorem (Stinespring's dilation for CP maps. 1955)

$$\phi: \mathcal{A} \xrightarrow{CP} \mathcal{B}(\mathcal{H}) \implies \exists (\pi, V, \mathcal{K}) \sim \begin{cases} \mathcal{K} - \textit{Hilbert space} \\ \pi: \mathcal{A} \to \mathcal{B}(\mathcal{K}) \text{ repn.} \\ V \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \end{cases}$$

such that

$$\phi(a) = V^* \pi(a) V, \quad a \in \mathcal{A}.$$

Such a triple (π, V, \mathcal{K}) is called a Stinespring's dilation for ϕ . Vijaya Kumar U (ISIBC)

August 23, 2019 5 / 37

Quantum Dynamical Semigroups Definition

Let $\mathbb{T}=\mathbb{R}_+$ or $\mathbb{Z}_+.$

Definition

Let \mathcal{A} be a unital C^* -algebra. A family $\phi = (\phi_t)_{t \in \mathbb{T}}$ of CP maps on \mathcal{A} is said to be a quantum dynamical semigroup (QDS) or one-parameter CP-semigroup if

- $\phi_t(\mathbf{1}) \leq \mathbf{1}$ for all $t \in \mathbb{T}$, (contractivity)
- The map $t \mapsto \phi_t(a)$ is continuous for all $a \in \mathcal{A}$. (strong continuity)

Quantum Dynamical Semigroups Definition

Let $\mathbb{T}=\mathbb{R}_+$ or $\mathbb{Z}_+.$

Definition

Let \mathcal{A} be a unital C^* -algebra. A family $\phi = (\phi_t)_{t \in \mathbb{T}}$ of CP maps on \mathcal{A} is said to be a quantum dynamical semigroup (QDS) or one-parameter CP-semigroup if

3
$$\phi_t(\mathbf{1}) \leq \mathbf{1}$$
 for all $t \in \mathbb{T},$ (contractivity)

• The map $t \mapsto \phi_t(a)$ is continuous for all $a \in \mathcal{A}$. (strong continuity)

It is said to be conservative QDS or Quantum Markov semigroup (QMS) if ϕ_t is unital for all $t \in \mathbb{T}$. If ϕ is a semigroup of CP maps on a von Neumann algebra \mathcal{A} , we assume every ϕ_t to be normal. (τ is normal $\iff a_\lambda \uparrow a \implies \tau(a_\lambda) \uparrow \tau(a)$)

Block maps Introduction

Let \mathcal{A} be a unital C^* -algebra. Let $p \in \mathcal{A}$ be a projection. Set p' = 1 - p.

$$x = \begin{pmatrix} pxp & pxp' \\ p'xp & p'xp' \end{pmatrix} \in \begin{pmatrix} p\mathcal{A}p & p\mathcal{A}p' \\ p'\mathcal{A}p & p'\mathcal{A}p' \end{pmatrix}.$$
 (1)

Definition

Let \mathcal{A} and \mathcal{B} be unital C^* -algebras. Let $p \in \mathcal{A}$ and $q \in \mathcal{B}$ be projections. We say that a map $\Phi : \mathcal{A} \to \mathcal{B}$ is a *block map* (with respect to p and q) if Φ respects the above block decomposition. i.e., for all $x \in \mathcal{A}$ we have

$$\Phi(x) = \begin{pmatrix} \Phi(pxp) & \Phi(pxp') \\ \Phi(p'xp) & \Phi(p'xp') \end{pmatrix} \in \begin{pmatrix} q\mathcal{B}q & q\mathcal{B}q' \\ q'\mathcal{B}q & q'\mathcal{B}q' \end{pmatrix}.$$
 (2)

イロト イボト イヨト イヨト

 $\begin{array}{ll} \mbox{If } \Phi: \mathcal{A} \rightarrow \mathcal{B} \mbox{ is a block map, then we get:} \\ \phi_{11}: p\mathcal{A}p \rightarrow q\mathcal{B}q, \quad \phi_{12}: p\mathcal{A}p' \rightarrow q\mathcal{B}q', \\ \phi_{21}: p'\mathcal{A}p \rightarrow q'\mathcal{B}q, \quad \phi_{22}: p'\mathcal{A}p' \rightarrow q'\mathcal{B}q'. \end{array}$

So we write
$$\Phi = \begin{pmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{pmatrix}$$
.

 $\begin{array}{l} \mbox{If } \Phi: \mathcal{A} \rightarrow \mathcal{B} \mbox{ is a block map, then we get:} \\ \phi_{11}: p\mathcal{A}p \rightarrow q\mathcal{B}q, \quad \phi_{12}: p\mathcal{A}p' \rightarrow q\mathcal{B}q', \\ \phi_{21}: p'\mathcal{A}p \rightarrow q'\mathcal{B}q, \quad \phi_{22}: p'\mathcal{A}p' \rightarrow q'\mathcal{B}q'. \end{array}$

So we write
$$\Phi = \begin{pmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{pmatrix}$$
.

We will look at BLOCK CP MAPS and their SEMIGROUPS!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Block CP maps

$$\mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \ni \begin{pmatrix} A & B \\ B^* & D \end{pmatrix} \ge 0 \iff \begin{cases} A, D \ge 0 \text{ and} \\ B = A^{\frac{1}{2}}TD^{\frac{1}{2}} \text{ for some contraction } T. \end{cases}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Block CP maps

$$\mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \ni \begin{pmatrix} A & B \\ B^* & D \end{pmatrix} \ge 0 \iff \begin{cases} A, D \ge 0 \text{ and} \\ B = A^{\frac{1}{2}}TD^{\frac{1}{2}} \text{ for some contraction } T. \end{cases}$$

Suppose $\Phi: M_2(\mathcal{A}) \to M_2(\mathcal{B})$ is a CP map, where \mathcal{A} is a unital C^* -algebra.

$$\Phi = \begin{pmatrix} \phi_1 & \psi \\ \psi^* & \phi_2 \end{pmatrix} \text{ is block CP } \implies \begin{cases} \phi_1, \phi_2 \text{ are CP and} \\ \psi \text{ is CB, where } \psi^*(a) = \psi(a^*)^*, a \in \mathcal{A} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶

Block CP maps

$$\mathcal{B}(\mathcal{H} \oplus \mathcal{K}) \ni \begin{pmatrix} A & B \\ B^* & D \end{pmatrix} \ge 0 \iff \begin{cases} A, D \ge 0 \text{ and} \\ B = A^{\frac{1}{2}}TD^{\frac{1}{2}} \text{ for some contraction } T. \end{cases}$$

Suppose $\Phi: M_2(\mathcal{A}) \to M_2(\mathcal{B})$ is a CP map, where \mathcal{A} is a unital C^* -algebra.

$$\Phi = \begin{pmatrix} \phi_1 & \psi \\ \psi^* & \phi_2 \end{pmatrix} \text{ is block CP } \implies \begin{cases} \phi_1, \phi_2 \text{ are CP and} \\ \psi \text{ is CB, where } \psi^*(a) = \psi(a^*)^*, a \in \mathcal{A} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶

Stucture of block CP maps

Introduction

Theorem (Paulsen and Suen [PS85])

Let \mathcal{A} be a unital C^* -algebra. Suppose $\Phi : M_2(\mathcal{A}) \to M_2(\mathcal{B}(\mathcal{H}))$ defined by $\Phi = \begin{pmatrix} \phi & \psi \\ \psi^* & \phi \end{pmatrix}$ is completely positive, and (\mathcal{K}, η, V) is a Stinespring representation for ϕ . Then there is a contraction $T : \mathcal{K} \to \mathcal{K}$ with $\eta(a)T = T\eta(a)$ for all $a \in \mathcal{A}$ such that $\psi(a) = V^*T\eta(a)V$ for all $a \in \mathcal{A}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stucture of block CP maps

Introduction

Theorem (Paulsen and Suen [PS85])

Let \mathcal{A} be a unital C^* -algebra. Suppose $\Phi : M_2(\mathcal{A}) \to M_2(\mathcal{B}(\mathcal{H}))$ defined by $\Phi = \begin{pmatrix} \phi & \psi \\ \psi^* & \phi \end{pmatrix}$ is completely positive, and (\mathcal{K}, η, V) is a Stinespring representation for ϕ . Then there is a contraction $T : \mathcal{K} \to \mathcal{K}$ with $\eta(a)T = T\eta(a)$ for all $a \in \mathcal{A}$ such that $\psi(a) = V^*T\eta(a)V$ for all $a \in \mathcal{A}$.

Theorem

Let \mathcal{A} be a unital C^* -algebra. Suppose $\Phi: M_2(\mathcal{A}) \to M_2(\mathcal{B}(\mathcal{H}))$ defined by $\Phi = \begin{pmatrix} \phi_1 & \psi \\ \psi^* & \phi_2 \end{pmatrix}$ is completely positive, and $(\mathcal{K}_i, \eta_i, V_i)$ is a Stinespring representation for $\phi_i, i = 1, 2$. Then there is a contraction $T: \mathcal{K}_2 \to \mathcal{K}_1$ with $\eta_1(a)T = T\eta_2(a)$ for all $a \in \mathcal{A}$ such that $\psi(a) = V_1^*T\eta_2(a)V_2$ for all $a \in \mathcal{A}$.

Bhat and Mukherjee studied semigroups of block CP mas on $\mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ so Vijaya Kumar U (ISIBC) August 23, 2019 10/37

Introduction

Let \mathcal{A} and \mathcal{B} be C^* -algebras and $\phi : \mathcal{A} \to \mathcal{B}$ be a CP map. What is the structure theorem analogues to Stinespring's theorem?

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー のの⊙

Introduction

Let \mathcal{A} and \mathcal{B} be C^* -algebras and $\phi : \mathcal{A} \to \mathcal{B}$ be a CP map. What is the structure theorem analogues to Stinespring's theorem?

$\begin{array}{l} \hline \textbf{Definition (Hilbert C^*-module)}\\ \hline E\text{-complex vector space, \mathcal{B}- a C^*-algebra}\\ \hline E\text{-Hilbert \mathcal{B}-module \Longleftrightarrow} & \begin{cases} E $ is a $ right \mathcal{B}-module,}\\ E $ has a \mathcal{B}-valued inner product $\langle \cdot, \cdot \rangle$,}\\ \hline E $ is complete in the norm: $\|x\| = \sqrt{\|\langle x, x \rangle\|}$. \end{cases}$

Cauchy-Schwarz inequality

E- semi inner product \mathcal{B} -module,

 $\langle x,y\rangle \langle y,x\rangle \leq \|\langle y,y\rangle\|\, \langle x,x\rangle, \quad \text{for all } x,y\in E.$

Vijaya Kumar U (ISIBC)

Introduction

Significant difference from Hilbert spaces?

self-duality, adjointability, complementability

イロト 不得下 イヨト イヨト 二日

Introduction

Significant difference from Hilbert spaces?

self-duality, adjointability, complementability

Definition (two-sided)

Let \mathcal{A} and \mathcal{B} be C^* -algebras. A Hilbert \mathcal{B} -module E with a non-degenerate representation $\pi : \mathcal{A} \to \mathcal{B}^a(E)$ is said to be a *Hilbert* \mathcal{A} - \mathcal{B} -module or \mathcal{A} - \mathcal{B} -correspondence.

(π is non-degenerate if span $\pi(\mathcal{A})E = E$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Introduction

Definition (tensor product)

Let E be a Hilbert A-B-module and F be a Hilbert B-C-module. Then

$$\langle x \otimes y, x' \otimes y' \rangle = \langle y, \langle x, x' \rangle y' \rangle$$

defines a semi inner product on (the algebraic tensor product) $E\otimes F$ with the natural right C-action. Let

$$N = \{ w \in E \otimes F : \langle w, w \rangle = 0 \}.$$

The *interior tensor product* of E and F is defined as

$$E \odot F = \overline{E \otimes F/N}$$

Note that $E \odot F$ is a Hilbert A-C-module with the natural left action of A.

Vijaya Kumar U (ISIBC)

< ロト < 同ト < ヨト < ヨト

Introduction

Let *E* be a Hilbert *A*-*B*-module. (Notation: $_{\mathcal{A}}E_{\mathcal{B}}$) Let $\mathcal{B} \subseteq \mathcal{B}(\mathcal{G})$, (\mathcal{G} can be viewed as $_{\mathcal{B}}\mathcal{G}_{\mathbb{C}}$).

 $_{\mathcal{A}}\mathcal{H}_{\mathbb{C}}:=_{\mathcal{A}}E_{\mathcal{B}}\odot_{\mathcal{B}}\mathcal{G}_{\mathbb{C}}$

That is, \mathcal{H} is a Hil. sp. with a rep. $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$. For $x \in E$ let $L_x : \mathcal{G} \to \mathcal{H}$ be defined by $L_x(g) = x \odot g$, then $L_x \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ with $L_x^* : x' \odot g \mapsto \langle x, x' \rangle g$. Define

$$\eta: E \to \mathcal{B}(\mathcal{G}, \mathcal{H}) \quad \text{by } \eta(x) = L_x.$$

Then

$$L_x^*L_y = \langle x,y\rangle \in \mathcal{B} \subseteq \mathcal{B}(\mathcal{G}) \quad \text{and} \quad L_{axb} = \rho(a)L_xb.$$

 $_{\mathcal{A}}E_{\mathcal{B}} \subseteq _{\mathcal{B}(\mathcal{H})}\mathcal{B}(\mathcal{G},\mathcal{H})_{\mathcal{B}(\mathcal{G})}.$

Vijaya Kumar U (ISIBC)

Introduction

Definition

Let \mathcal{B} be a von Neumann algebra on a Hilbert space \mathcal{G} . A Hilbert \mathcal{B} -module E is a von Neumann \mathcal{B} -module if E is strongly closed in $\mathcal{B}(\mathcal{G}, E \odot \mathcal{G})$.

Definition

Let \mathcal{A} be a von Neumann algebra. A von Neumann \mathcal{B} -module E is said to be von Neumann \mathcal{A} - \mathcal{B} -module if it is a Hilbert \mathcal{A} - \mathcal{B} -module such that the representation $\rho : \mathcal{A} \to \mathcal{B}(E \odot \mathcal{G})$ is normal.

Lemma

Let \mathcal{A} be a C^* -algebra and let \mathcal{B} be a von Neumann algebra on a Hilbert space \mathcal{G} . Let E be a Hilbert \mathcal{A} - \mathcal{B} -module. Then the operations $x \mapsto xb$, $x \mapsto \langle y, x \rangle$ and $x \mapsto ax$ are strongly continuous. Hence \overline{E}^s is a Hilbert \mathcal{A} - \mathcal{B} -module and a von Neumann \mathcal{B} -module.

Introduction

Results

If E is a von Neumann \mathcal{B} -module, then $\mathcal{B}^{a}(E)$ is a von Neumann subalgebra of $\mathcal{B}(E \odot \mathcal{G})$. von Neumann modules are self-dual and hence any bounded right linear map between von Neumann module is adjointable. If F is avon Nuemann submodule of E then there exists a projection p ($p = p^{2} = p^{*}$) in $\mathcal{B}^{a}(E)$ onto F. (complementary)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Structure of CP maps

Hilbert C^* -modules

GNS-construction (Paschke [7])

Let \mathcal{A} and \mathcal{B} be unital C^* -algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be a CP map. Then, there exists a pair (E, ξ) of a Hilbert Hilbert \mathcal{A} - \mathcal{B} -module E and a cyclic vector $\xi \in E$ (i.e., $E = \overline{\text{span}}(\mathcal{A}\xi\mathcal{B})$) such that

 $\phi(a) = \langle \xi, a\xi \rangle, \quad a \in \mathcal{A}.$

The pair (E,ξ) is called the GNS-construction of ϕ and E is called the GNS-module for ϕ . Obviously ϕ is unital if and only if $\langle \xi, \xi \rangle = 1$.

Structure of CP maps

Hilbert C^* -modules

GNS-construction (Paschke [7])

Let \mathcal{A} and \mathcal{B} be unital C^* -algebras and let $\phi : \mathcal{A} \to \mathcal{B}$ be a CP map. Then, there exists a pair (E, ξ) of a Hilbert Hilbert \mathcal{A} - \mathcal{B} -module E and a cyclic vector $\xi \in E$ (i.e., $E = \overline{\text{span}}(\mathcal{A}\xi\mathcal{B})$) such that

 $\phi(a) = \langle \xi, a\xi \rangle, \quad a \in \mathcal{A}.$

The pair (E,ξ) is called the GNS-construction of ϕ and E is called the GNS-module for ϕ . Obviously ϕ is unital if and only if $\langle \xi, \xi \rangle = 1$.

Definition

Let $\phi : \mathcal{A} \to \mathcal{B}$ be a CP map. Let E be a Hilbert \mathcal{A} - \mathcal{B} -module and $\xi \in E$, We call (E,ξ) as a GNS-representation for ϕ if $\phi(a) = \langle \xi, a\xi \rangle$ for all $a \in \mathcal{A}$. It is said to be minimal if $E = \overline{\operatorname{span}}(\mathcal{A}\xi\mathcal{B})$. (uniqueness!)

・ロト ・部ト ・ヨト ・ヨト 三星

Introduction

Proposition 1

If E is the GNS-module of a normal completely positive map $\phi : \mathcal{A} \to \mathcal{B}$ between von Neumann algebras, then \overline{E}^s is a von Neumann \mathcal{A} - \mathcal{B} -module.

Proposition 2

Let E be a von Neumann \mathcal{A} - \mathcal{B} -module. Let $\pi : \mathcal{B} \to \mathcal{B}(\mathcal{G})$ be a normal representation. Then $\rho : \mathcal{A} \to \mathcal{B}(E \odot G)$ is normal.

Proposition 3

If E be a von Neumann \mathcal{A} - \mathcal{B} -module and let F be a von Neumann \mathcal{B} - \mathcal{C} -module where \mathcal{C} acts on a Hilbert space \mathcal{G} . Then the strong closure $E\bar{\odot}^s F$ of the tensor product $E\odot F$ in $\mathcal{B}(\mathcal{G}, E\odot F\odot \mathcal{G})$, is a von Neumann \mathcal{A} - \mathcal{C} -module.

イロト 不得 トイラト イラト 二日

Introduction

Definition (conventions)

Due to Propositions 1, 2, 3 we make the following conventions:

- Whenever \mathcal{B} is a von Neumann algebra and $\phi : \mathcal{A} \to \mathcal{B}$ is a CP map, by GNS-module we always mean \overline{E}^s , where E is the GNS-module, constructed above.
- ② If *E* and *F* are von Neumann modules, by tensor product of *E* and *F* we mean the strong closure $\overline{E \odot F}^s$ of $E \odot F$ and we still write $E \odot F$.

イロト イポト イヨト イヨト 二日

Hilbert C^* -modules $M_2(\mathcal{B})$ - $M_2(\mathcal{B}) \rightsquigarrow \mathcal{B}$ - \mathcal{B}

Observation

Let F be a Hilbert(von Neumann) $M_2(\mathcal{B})-M_2(\mathcal{B})$ -module. Then F can be treated as a Hilbert(von Neumann) \mathcal{B} - \mathcal{B} -module with right and left \mathcal{B} -module action on F given by

$$wb := w \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}, \quad bw := \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix} w, \quad w \in F, b \in \mathcal{B}$$
 (3)

and with the $\mathcal B$ -valued semi-inner product $\langle \cdot, \cdot
angle_{\mathcal B}$ on F given by

$$\langle z, w \rangle_{\mathcal{B}} := \sum_{i,j=1}^{2} \langle z, w \rangle_{i,j}, z, w \in F.$$
 (4)

(Indeed, we consider $\overline{F/N}$, where $N = \{w : \langle w, w \rangle_{\mathcal{B}} = 0\}$, and we still write F instead of $\overline{F/N}$).

Theorem (for a single block CP map)

Let \mathcal{A} be a unital C^* -algebra and \mathcal{B} be a von Neumann algebra on a Hilbert space \mathcal{G} . Let $\Phi: M_2(\mathcal{A}) \to M_2(\mathcal{B})$ be the block CP map $\Phi = \begin{pmatrix} \phi_1 & \psi \\ \psi^* & \phi_2 \end{pmatrix}$, and let (E_i, ξ_i) be the GNS-construction for $\phi_i, i = 1, 2$. Then there is a unique adjointable bilinear contraction $T: E_2 \to E_1$ such that $\psi(a) = \langle \xi_1, Ta\xi_2 \rangle$ for all $a \in \mathcal{A}$.

Stucture of block CP maps

Proof.

Let (E,ξ) be the GNS-construction for Φ . Let $E_i = \mathbb{E}_{ii}E$, i = 1, 2, (*B*-*B*-modules) where $\mathbb{E}_{ij} = \mathbf{1} \odot E_{ij}$. $(\vec{E}_i, \mathbb{E}_{ii} \xi \mathbb{E}_{ii})$ -GNS for $\phi_i, i = 1, 2$. Define $U: E_2 \to E_1$ by $Ux = \mathbb{E}_{12}x$ (U is a bilinear unitary). Let $V_i: E_i \to E_i$ by $V_i(a\xi_i b) = a\mathbb{E}_{ii}\xi\mathbb{E}_{ii}b$. Take $T = V_1^*UV_2$. $\langle \xi_1, Ta\xi_2 \rangle = \langle \xi_1, V_1^*UV_2a\xi_2 \rangle = \langle V_1\xi_1, UV_2\xi_2 \rangle$ $= \left\langle \mathbb{E}_{11} \xi \mathbb{E}_{11}, a \mathbb{E}_{12} \mathbb{E}_{22} \xi \mathbb{E}_{22} \right\rangle = \left\langle \xi \mathbb{E}_{11}, \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \xi \mathbb{E}_{22} \right\rangle$ $=\sum_{i,j=1}^{2} \left(\mathbb{E}_{11} \left\langle \xi, \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \xi \right\rangle \mathbb{E}_{22} \right)_{i,j} = \sum_{i,j=1}^{2} \left(\mathbb{E}_{11} \begin{pmatrix} 0 & \psi(a) \\ 0 & 0 \end{pmatrix} \mathbb{E}_{22} \right)_{i,j}$ $=\sum_{i=1}^{2} \begin{pmatrix} 0 & \psi(a) \\ 0 & 0 \end{pmatrix}_{i,i} = \psi(a).$

Stucture of block CP maps

von Neumann algebras

Example

Let $\mathcal{A} = \mathcal{B} = C([0,1])$, Let

$$h_1(t) = t, \quad h_2(t) = 1 \quad \text{for } t \in [0, 1].$$
 (5)

Consider the CP map $\Phi: M_2(\mathcal{A}) \to M_2(\mathcal{B})$ defined by

$$\Phi\begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} = \begin{pmatrix} h_1^* & 0 \\ 0 & h_2^* \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \begin{pmatrix} h_1 & 0 \\ 0 & h_2 \end{pmatrix} = \begin{pmatrix} h_1^* f_{11} h_1 & h_1^* f_{12} h_2 \\ h_2^* f_{21} h_1 & h_2^* f_{22} h_2 \end{pmatrix}$$

Note that $E_1 = \{f \in C([0,1]) : f(0) = 0\} \subseteq C([0,1]) \text{ and } E_2 = C([0,1]).$ There is no bilinear adjointable contraction $T : E_2 \to E_1$ such that $\langle h_1, fh_2 \rangle = \langle h_1, Tfh_2 \rangle$ for all $f \in C([0,1]).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Hilbert C^* -modules Product Systems

Definition

Let \mathcal{B} be a C^* -algebra. An inclusion system (E, β) is a family $E = (E_t)_{t \in \mathbb{T}}$ of Hilbert \mathcal{B} - \mathcal{B} -modules with $E_0 = \mathcal{B}$ and a family $\beta = (\beta_{s,t})_{s,t \in \mathbb{T}}$ of two-sided isometries $\beta_{s,t} : E_{s+t} \to E_s \odot E_t$ such that, for all $r, s, t \in \mathbb{T}$,

$$(\beta_{r,s} \odot \mathsf{id}_{E_t})\beta_{r+s,t} = (\mathsf{id}_{E_r} \odot \beta_{s,t})\beta_{r,s+t}.$$

It is said to be a product system if every β_{st} is unitary.

$$\begin{array}{c} E_{r+s+t} \xrightarrow{\beta_{r+s,t}} E_{r+s} \odot E_t \\ \downarrow^{\beta_{r,s+t}} & \downarrow^{\beta_{r,s} \odot \operatorname{id}_{E_t}} \\ E_r \odot E_{s+t} \xrightarrow{\operatorname{id}_{E_r} \odot \beta_{s,t}} E_r \odot E_s \odot E_t \end{array}$$

イロト 不得下 イヨト イヨト 二日

Remark

If \mathcal{B} is von Neumann algebra in the above definition, then we consider incusion system of von Neumann \mathcal{B} - \mathcal{B} -modules.

Definition

Let (E, β) be an inclusion system. A family $\xi^{\odot} = (\xi_t)_{t \in \mathbb{T}}$ of vectors $\xi_t \in E_t$ is called a unit for the inclusion system, if $\beta_{s,t}(\xi_{s+t}) = \xi_s \odot \xi_t$. A unit is called unital, if $\langle \xi_t, \xi_t \rangle = 1$ for all $t \in \mathbb{T}$. A unit is called generating, if E_t is spanned by images of elements $b_n \xi_{t_n} \odot \cdots \odot b_1 \xi_{t_1} b_0$ $(t_i \in \mathbb{T}, \sum t_i = t, b_i \in \mathcal{B})$ under successive applications of appropriate mappings id $\odot \beta^*_{s,s'} \odot$ id.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Product Systems

Observation

Suppose (E,β) an inclusion system with a unit (unital) ξ^{\odot} . Consider $\phi_t : \mathcal{B} \to \mathcal{B}$ defined by

$$\phi_t(b) = \langle \xi_t, b\xi_t \rangle$$
 for $b \in \mathcal{B}$.

Then as $\beta_{s,t}$'s are two-sided isometries and ξ^{\odot} is a unit, for $b \in \mathcal{B}$ we have

$$\begin{aligned} \phi_t \circ \phi_s(b) &= \phi_t(\langle \xi_s, b\xi_s \rangle) = \langle \xi_t, \langle \xi_s, b\xi_s \rangle \xi_t \rangle \\ &= \langle \xi_s \odot \xi_t, b(\xi_s \odot \xi_t) \rangle = \langle \xi_{t+s}, b\xi_{t+s} \rangle \\ &= \phi_{t+s}(b). \end{aligned}$$

That is, $(\phi_t)_{t\in\mathbb{T}}$ is a QDS (QMS).

Converse?

Vijaya Kumar U (ISIBC)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Hilbert C^* -modules Product Systems

Observation

Let $\phi : \mathcal{A} \to \mathcal{B}$ and $\psi : \mathcal{B} \to \mathcal{C}$ be CP maps

 $\phi \rightsquigarrow (E,\xi), \quad \psi \rightsquigarrow (F,\zeta), \qquad \psi \circ \phi \rightsquigarrow (K,\kappa)$ $\psi \circ \phi(a) = \psi(\langle \xi, a\xi \rangle) = \langle \zeta, \langle \xi, a\xi \rangle \zeta \rangle = \langle \xi \odot \zeta, a\xi \odot \zeta \rangle.$

 $(\psi \circ \phi \rightsquigarrow (E \odot F, \xi \odot \zeta))$ (need not be minimal)

Thus $\kappa \mapsto \xi \odot \zeta$ extends to a unique two-sided isometry $K \to E \odot F$. So $K \hookrightarrow E \odot F$; $K = \overline{\operatorname{span}}(\mathcal{A}\xi \odot \zeta \mathcal{C})$; $E \odot F = \overline{\operatorname{span}}(\mathcal{A}\xi \mathcal{B} \odot \mathcal{B}\zeta \mathcal{C}) = \overline{\operatorname{span}}(\mathcal{A}\xi \mathcal{B} \odot \zeta \mathcal{C})$.

Stinespring representation?

Vijaya Kumar U (ISIBC)

Product Systems

Observation

Let $\phi = (\phi_t)_{t \in \mathbb{T}}$ be a QDS on a unital C^* -algebra \mathcal{B} . Let (E_t, ξ_t) be the GNS-construction for ϕ_t . $(\xi_t$ -cyclic in E_t such that $\phi_t(b) = \langle \xi_t, b\xi_t \rangle$, $E_0 = \mathcal{B}$ and $\xi_0 = 1$.) Define

$$\beta_{s,t}: E_{s+t} \to E_s \odot E_t: \qquad \xi_{t+s} \mapsto \xi_s \odot \xi_t.$$

Then $\beta_{s,t}$'s are two-sided isometries. Now

$$\begin{aligned} (\beta_{r,s} \odot I_{E_t})\beta_{r+s,t}(\xi_{r+s+t}) &= (\beta_{r,s} \odot I_{E_t})(\xi_{r+s} \odot \xi_t) = (\xi_r \odot \xi_s) \odot \xi_t \\ &= \xi_r \odot (\xi_s \odot \xi_t) = (I_{E_r} \odot \beta_{s,t})(\xi_r \odot \xi_{s+t}) \\ &= (I_{E_r} \odot \beta_{s,t})\beta_{r,s+t}(\xi_{r+s+t}) \end{aligned}$$

shows that (E,β) is an inclusion system of Hilbert \mathcal{B} - \mathcal{B} -module. It is obvious to see that $\xi^{\odot} = (\xi_t)$ is a generating unit for (E,β) .

Product Systems and Morphisms

Definition

For a QDS $\phi = (\phi_t)_{t \ge 0}$ on \mathcal{B} , the inclusion system with the generating unit (E, β, ξ^{\odot}) given in the previous observation is called the inclusion system associated to ϕ .

Definition

Let (E, β) and (F, γ) be two inclusion systems. Let $T = (T_t)_{t \in \mathbb{T}}$ be a family of two-sided (bilinear) maps $T_t : E_t \to F_t$, satisfying $||T_t|| \le e^{tk}$ for some $k \in \mathbb{R}$. Then T is said to be a morphism or a *weak morphism* from (E, β) to (F, γ) if $\gamma_{s,t}$'s are adjointable and

$$T_{s+t} = \gamma_{s,t}^* (T_s \odot T_t) \beta_{s,t} \text{ for all } s, t \in \mathbb{T}.$$
(6)

It is said to be a strong morphism if

 $\gamma_{s,t}T_{s+t} = (T_s \odot T_t)\beta_{s,t}$ for all $s, t \in \mathbb{T}$.

Vijaya Kumar U (ISIBC)

August 23, 2019 29 / 37

Product Systems: morphism

Problem

Let \mathcal{A}, \mathcal{B} be unital C^* -algebras and let $p \in \mathcal{A}, q \in \mathcal{B}$ be projections. Let $\Phi = \begin{pmatrix} \phi_1 & \psi \\ \psi^* & \phi_2 \end{pmatrix}$ be a block CP map with respect to p and q. Let (E_i, ξ_i) be GNS-representation of $\phi_i, i = 1, 2$. Can we prove a theorem similar to the above theorem ? or What is the structure of ψ in terms of (E_i, ξ_i) ?

イロト イポト イヨト イヨト 二日

Stucture of block QDS

Lemma

Let \mathcal{B} be a unital C^* -algebra. Given two inclusion systems (E^i, β^i, ξ^i) associated to the CP semigroups $\phi^i = (\phi^i_t), i = 1, 2$ on \mathcal{B} and a contractive morphism $T : E^2 \to E^1$, there is a block CP semigroup $\Phi = (\Phi_t)_{t\geq 0}$ on $M_2(\mathcal{B})$ such that $\Phi_t = \begin{pmatrix} \phi^1_t & \psi_t \\ \psi^*_t & \phi^2_t \end{pmatrix}$ and $\psi_t(a) = \langle \xi^1_t, T_t(a\xi^2_t) \rangle$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stucture of block QDS

Proof.

Let $\Phi_t := \begin{pmatrix} \phi_t^1 & \psi_t \\ \psi_t^* & \phi_t^2 \end{pmatrix}$, where $\psi_t(a) := \langle \xi_t^1, T_t(a\xi_t^2) \rangle$. Then ϕ_t is CP. Consider

$$\Phi_s \circ \Phi_t \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \Phi_s \begin{pmatrix} \phi_t^1(a) & \psi_t(b) \\ \psi_t^*(c) & \phi_t^2(d) \end{pmatrix} = \begin{pmatrix} \phi_{s+t}^1(a) & \psi_s(\psi_t(b)) \\ \psi_s^*(\psi_t^*(c)) & \phi_{s+t}^2(d) \end{pmatrix}$$

$$\begin{split} \psi_{s}(\psi_{t}(b)) &= \langle \xi_{s}^{1}, T_{s}\psi_{t}(b)\xi_{s}^{2} \rangle = \langle \xi_{s}^{1}, \psi_{t}(b)T_{s}\xi_{s}^{2} \rangle = \langle \xi_{s}^{1}, \langle \xi_{t}^{1}, T_{t}b\xi_{t}^{2} \rangle T_{s}\xi_{s}^{2} \rangle \\ &= \langle \xi_{t}^{1} \odot \xi_{s}^{1}, T_{t}b\xi_{t}^{2} \odot T_{s}\xi_{s}^{2} \rangle = \langle \xi_{t}^{1} \odot \xi_{s}^{1}, b(T_{t} \odot T_{s})(\xi_{t}^{2} \odot \xi_{s}^{2}) \rangle \\ &= \langle \beta_{t,s}^{1}(\xi_{t+s}^{1}), b(T_{t} \odot T_{s})\beta_{t,s}^{2}(\xi_{t,s}^{2}) \rangle \\ &= \langle (\xi_{t+s}^{1}), b\beta_{t,s}^{1*}(T_{t} \odot T_{s})\beta_{t,s}^{2}(\xi_{t,s}^{2}) \rangle \\ &= \langle \xi_{t+s}^{1}, bT_{t+s}\xi_{t+s}^{2} \rangle \\ &= \psi_{t+s}(b). \end{split}$$

Vijava Kumar U (ISIBC)

Stucture of block QDS

Theorem (for a block QDS on a vN-alg \mathcal{B})

Let $\Phi_t = \begin{pmatrix} \phi_t^1 & \psi_t \\ \psi_t^* & \phi_t^2 \end{pmatrix}$: $M_2(\mathcal{B}) \to M_2(\mathcal{B})$ and $\Phi = (\Phi_t)_{t \ge 0}$ be a semigroup (on $M_2(\mathcal{B})$) of block normal CP maps. Then there is a unique contractive morphism $T : E^2 \to E^1$ such that $\psi_t(a) = \langle \xi_t^1, T_t(a\xi_t^2) \rangle$ for all $a \in \mathcal{B}$, $t \ge 0$, where $(E^i, \beta^i, \xi^{\odot i})$, is the inclusion system associated to $\phi^i, i = 1, 2$.

Proof.

For all $t \ge 0$ we have $T_t : E_2 \to E_1, \ \psi_t(a) = \langle \xi_t^1, T_t(a\xi_t^2) \rangle, \ \forall \ a \in \mathcal{A}.$

* * * * *

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

References I

- B. V. Rajarama Bhat and Vijaya Kumar U: Structure of block quantum dynamical semigroups and their product systems. Preprint: https://arxiv.org/pdf/1908.04098.pdf
- V. PAULSEN, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 2002.
- W. Arveson. Noncommutative dynamics and E-semigroups. Springer Monographs in Math.(2003).
- E.C Lance. Hilbert C*-modules. A toolkit for operator algebraists. London Math. Soc. Lec. Note Series vol. 210, Cambridge Univ. Press (1995).
- B.V.R. Bhat and M. Skeide. Tensor product systems of Hilbert modules and dilations of completely positive semigroups. *Infin. Dimens. Anal. Quantum Probab. Relat. Topics* 3(4), 519-575 (2000).

3

イロト イヨト イヨト

- B.V.R. Bhat and M. Mukherjee. Inclusion systems and amalgamated products of product systems. *Infin. Dimens. Anal. Quantum Probab. Relat. Topics* 13(1), 1-26 (2010).
- W.L. Paschke. Inner product modules over *B**-algebras. *Trans. Amer. Math. Soc.* 182, 443-468 (1973).
- Vern I. Paulsen and Ching Yun Suen. Commutant representations of completely bounded maps, *J. Operator Theory*, 13(1):87–101, 1985.
- W. F. Stinespring. Positive functions on C*-algebras. *Proc. Amer. Math. Soc.*, 6:211–216, 1955.

イロト イヨト イヨト

THANK YOU

Vijaya Kumar U (ISIBC)

 ■
 ■
 >
 ■

 <

<ロト <回ト < 回ト < 回ト