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Introduction

Abbreviations:
CP Completely positive
CB Completely Bounded
UCP Unital Completely Positive
UNCP Unital Normal Completely Positive
QDS Quantum Dynamical Semigroup
QMS Quantum Markov Semigroup.
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CP maps
Definitions

Let A ⊆ B(H) be a C∗-algebra.

For n ∈ N, Mn(A) ⊆Mn(B(H)) ' B(H⊕n
).

Let A and B be unital C∗-algebras and let φ : A → B be a linear map.
For n ∈ N, define φn : Mn(A)→Mn(B) by

φn([aij ]
n
i,j=1) = [φ(aij)]

n
i,j=1, for [aij ]

n
i,j=1 ∈Mn(A).

A⊗Mn 'Mn(A) =⇒ φn = φ⊗ In : A⊗Mn → B ⊗Mn.

φ is said to be n-positive if φn is positive.

φ is said to be completely positive (CP) if φ is n-positive for all n ∈ N.
φ is said to be completely bounded (CB) if supn ‖φn‖ <∞.
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CP maps
Basic theorems

Theorem (Stinespring’s dilation for CP maps. 1955)

φ : A CP−→ B(H) =⇒ ∃(π, V,K) ∼


K − Hilbert space

π : A → B(K) repn.

V ∈ B(H,K)

such that
φ(a) = V ∗π(a)V, a ∈ A.

B(K)

A B(H)

V ∗(·)Vπ

φ

Such a triple (π, V,K) is called a Stinespring’s dilation for φ.
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Quantum Dynamical Semigroups
Definition

Let T = R+ or Z+.

Definition

Let A be a unital C∗-algebra. A family φ = (φt)t∈T of CP maps on A is
said to be a quantum dynamical semigroup (QDS) or one-parameter
CP-semigroup if

1 φs+t = φs ◦ φt for all t ∈ T,
2 φ0(a) = a for all a ∈ A,
3 φt(1) ≤ 1 for all t ∈ T, (contractivity)

4 The map t 7→ φt(a) is continuous for all a ∈ A. (strong continuity)

It is said to be conservative QDS or Quantum Markov semigroup (QMS) if
φt is unital for all t ∈ T.
If φ is a semigroup of CP maps on a von Neumann algebra A, we assume
every φt to be normal. ( τ is normal ⇐⇒ aλ ↑ a =⇒ τ(aλ) ↑ τ(a) )

∗ ∗ ∗ ∗ ∗
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Block maps
Introduction

Let A be a unital C∗-algebra. Let p ∈ A be a projection. Set p′ = 1− p.

x =

(
pxp pxp′

p′xp p′xp′

)
∈
(
pAp pAp′
p′Ap p′Ap′

)
. (1)

Definition

Let A and B be unital C∗-algebras. Let p ∈ A and q ∈ B be projections.
We say that a map Φ : A → B is a block map (with respect to p and q) if
Φ respects the above block decomposition. i.e., for all x ∈ A we have

Φ(x) =

(
Φ(pxp) Φ(pxp′)
Φ(p′xp) Φ(p′xp′)

)
∈
(
qBq qBq′
q′Bq q′Bq′

)
. (2)
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Block maps
Introduction

If Φ : A → B is a block map, then we get:
φ11 : pAp→ qBq, φ12 : pAp′ → qBq′,
φ21 : p′Ap→ q′Bq, φ22 : p′Ap′ → q′Bq′.

So we write Φ =

(
φ11 φ12
φ21 φ22

)
.

We will look at BLOCK CP MAPS and their SEMIGROUPS!
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Block CP maps
Introduction

B(H⊕K) 3
(
A B
B∗ D

)
≥ 0 ⇐⇒

{
A,D ≥ 0 and

B = A
1
2TD

1
2 for some contraction T.

Suppose Φ : M2(A)→M2(B) is a CP map, where A is a unital
C∗-algebra.

Φ =

(
φ1 ψ
ψ∗ φ2

)
is block CP =⇒

{
φ1, φ2 are CP and

ψ is CB, where ψ∗(a) = ψ(a∗)∗, a ∈ A.

Vijaya Kumar U (ISIBC) August 23, 2019 9 / 37



Block CP maps
Introduction

B(H⊕K) 3
(
A B
B∗ D

)
≥ 0 ⇐⇒

{
A,D ≥ 0 and

B = A
1
2TD

1
2 for some contraction T.

Suppose Φ : M2(A)→M2(B) is a CP map, where A is a unital
C∗-algebra.

Φ =

(
φ1 ψ
ψ∗ φ2

)
is block CP =⇒

{
φ1, φ2 are CP and

ψ is CB, where ψ∗(a) = ψ(a∗)∗, a ∈ A.

Vijaya Kumar U (ISIBC) August 23, 2019 9 / 37



Block CP maps
Introduction

B(H⊕K) 3
(
A B
B∗ D

)
≥ 0 ⇐⇒

{
A,D ≥ 0 and

B = A
1
2TD

1
2 for some contraction T.

Suppose Φ : M2(A)→M2(B) is a CP map, where A is a unital
C∗-algebra.

Φ =

(
φ1 ψ
ψ∗ φ2

)
is block CP =⇒

{
φ1, φ2 are CP and

ψ is CB, where ψ∗(a) = ψ(a∗)∗, a ∈ A.

Vijaya Kumar U (ISIBC) August 23, 2019 9 / 37



Stucture of block CP maps
Introduction

Theorem (Paulsen and Suen [PS85])

Let A be a unital C∗-algebra. Suppose Φ : M2(A)→M2(B(H)) defined

by Φ =

(
φ ψ
ψ∗ φ

)
is completely positive, and (K, η, V ) is a Stinespring

representation for φ. Then there is a contraction T : K → K with
η(a)T = Tη(a) for all a ∈ A such that ψ(a) = V ∗Tη(a)V for all a ∈ A.

Theorem

Let A be a unital C∗-algebra. Suppose Φ : M2(A)→M2(B(H)) defined

by Φ =

(
φ1 ψ
ψ∗ φ2

)
is completely positive, and (Ki, ηi, Vi) is a Stinespring

representation for φi, i = 1, 2. Then there is a contraction T : K2 → K1

with η1(a)T = Tη2(a) for all a ∈ A such that ψ(a) = V ∗1 Tη2(a)V2 for all
a ∈ A.

Bhat and Mukherjee studied semigroups of block CP mas on B(H⊕K).
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Hilbert C∗-modules
Introduction

Let A and B be C∗-algebras and φ : A → B be a CP map. What is the
structure theorem analogues to Stinespring’s theorem?

Definition (Hilbert C∗-module)

E-complex vector space, B- a C∗-algebra

E-Hilbert B-module ⇐⇒


E is a right B-module,

E has a B-valued inner product 〈·, ·〉,
E is complete in the norm: ‖x‖ =

√
‖〈x, x〉‖.

Cauchy-Schwarz inequality

E− semi inner product B-module,

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖ 〈x, x〉, for all x, y ∈ E.

Consider N = {x ∈ E : 〈x, x〉 = 0} is a B-submodule. Now E/N is a
B-mudule with the natural inner product.
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Hilbert C∗-modules
Introduction

Significant difference from Hilbert spaces?

self-duality, adjointability, complementability

Definition (two-sided)

Let A and B be C∗-algebras. A Hilbert B-module E with a
non-degenerate representation π : A → Ba(E) is said to be a Hilbert
A-B-module or A-B-correspondence.
(π is non-degenerate if span π(A)E = E)
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Hilbert C∗-modules
Introduction

Definition (tensor product)

Let E be a Hilbert A-B-module and F be a Hilbert B-C-module. Then

〈x⊗ y, x′ ⊗ y′〉 = 〈y, 〈x, x′〉y′〉

defines a semi inner product on (the algebraic tensor product) E ⊗ F with
the natural right C-action. Let

N = {w ∈ E ⊗ F : 〈w,w〉 = 0}.

The interior tensor product of E and F is defined as

E � F = E ⊗ F/N

Note that E�F is a Hilbert A-C-module with the natural left action of A.
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Hilbert C∗-modules
Introduction

Let E be a Hilbert A-B-module. (Notation: AEB)
Let B ⊆ B(G), (G can be viewed as BGC).

AHC := AEB � BGC

That is, H is a Hil. sp. with a rep. ρ : A → B(H).
For x ∈ E let Lx : G → H be defined by Lx(g) = x� g, then
Lx ∈ B(G,H) with L∗x : x′ � g 7→ 〈x, x′〉g. Define

η : E → B(G,H) by η(x) = Lx.

Then

L∗xLy = 〈x, y〉 ∈ B ⊆ B(G) and Laxb = ρ(a)Lxb.

AEB ⊆ B(H)B(G,H)B(G).
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Hilbert C∗-modules
Introduction

Definition

Let B be a von Neumann algebra on a Hilbert space G. A Hilbert B-module
E is a von Neumann B-module if E is strongly closed in B(G, E � G).

Definition

Let A be a von Neumann algebra. A von Neumann B-module E is said to
be von Neumann A-B-module if it is a Hilbert A-B-module such that the
representation ρ : A → B(E � G) is normal.

Lemma

Let A be a C∗-algebra and let B be a von Neumann algebra on a Hilbert
space G. Let E be a Hilbert A-B-module. Then the operations x 7→ xb,
x 7→ 〈y, x〉 and x 7→ ax are strongly continuous. Hence E

s
is a Hilbert

A-B-module and a von Neumann B-module.
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Hilbert C∗-modules
Introduction

Results

If E is a von Neumann B-module, then Ba(E) is a von Neumann
subalgebra of B(E � G). von Neumann modules are self-dual and hence
any bounded right linear map between von Neumann module is
adjointable. If F is avon Nuemann submodule of E then there exists a
projection p (p = p2 = p∗) in Ba(E) onto F. (complementary)
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Structure of CP maps
Hilbert C∗-modules

GNS-construction (Paschke [7])

Let A and B be unital C∗-algebras and let φ : A → B be a CP map.
Then, there exists a pair (E, ξ) of a Hilbert Hilbert A-B-module E and a
cyclic vector ξ ∈ E (i.e., E = span(AξB)) such that

φ(a) = 〈ξ, aξ〉, a ∈ A.

The pair (E, ξ) is called the GNS-construction of φ and E is called the
GNS-module for φ. Obviously φ is unital if and only if 〈ξ, ξ〉 = 1.

Definition

Let φ : A → B be a CP map. Let E be a Hilbert A-B-module and ξ ∈ E,
We call (E, ξ) as a GNS-representation for φ if φ(a) = 〈ξ, aξ〉 for all
a ∈ A. It is said to be minimal if E = span(AξB). (uniqueness!)
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Hilbert C∗-modules
Introduction

Proposition 1

If E is the GNS-module of a normal completely positive map φ : A → B
between von Neumann algebras, then E

s
is a von Neumann A-B-module.

Proposition 2

Let E be a von Neumann A-B-module. Let π : B → B(G) be a normal
representation. Then ρ : A → B(E �G) is normal.

Proposition 3

If E be a von Neumann A-B-module and let F be a von Neumann
B-C-module where C acts on a Hilbert space G. Then the strong closure
E�̄sF of the tensor product E � F in B(G, E � F � G), is a von
Neumann A-C-module.
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Hilbert C∗-modules
Introduction

Definition (conventions)

Due to Propositions 1, 2, 3 we make the following conventions:

1 Whenever B is a von Neumann algebra and φ : A → B is a CP map,
by GNS-module we always mean E

s
, where E is the GNS-module,

constructed above.

2 If E and F are von Neumann modules, by tensor product of E and F
we mean the strong closure E � F s of E�F and we still write E�F.
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Hilbert C∗-modules
M2(B)-M2(B) B-B

Observation

Let F be a Hilbert(von Neumann) M2(B)-M2(B)-module. Then F can be
treated as a Hilbert(von Neumann) B-B-module with right and left
B-module action on F given by

wb := w

(
b 0
0 b

)
, bw :=

(
b 0
0 b

)
w, w ∈ F, b ∈ B (3)

and with the B-valued semi-inner product 〈·, ·〉B on F given by

〈z, w〉B :=

2∑
i,j=1

〈z, w〉i,j , z, w ∈ F. (4)

(Indeed, we consider F/N, where N = {w : 〈w,w〉B = 0}, and we still
write F instead of F/N).
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Stucture of block CP maps

Theorem (for a single block CP map)

Let A be a unital C∗-algebra and B be a von Neumann algebra on a
Hilbert space G. Let Φ : M2(A)→M2(B) be the block CP map

Φ =

(
φ1 ψ
ψ∗ φ2

)
, and let (Ei, ξi) be the GNS-construction for φi, i = 1, 2.

Then there is a unique adjointable bilinear contraction T : E2 → E1 such
that ψ(a) = 〈ξ1, Taξ2〉 for all a ∈ A.
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Stucture of block CP maps

Proof.

Let (E, ξ) be the GNS-construction for Φ. Let Êi = EiiE, i = 1, 2,
(B-B-modules) where Eij = 1� Eij . (Êi,EiiξEii)−GNS for φi, i = 1, 2.
Define U : Ê2 → Ê1 by Ux = E12x (U is a bilinear unitary). Let
Vi : Ei → Êi by Vi(aξib) = aEiiξEiib. Take T = V ∗1 UV2.

〈ξ1, Taξ2〉 = 〈ξ1, V ∗1 UV2aξ2〉 = 〈V1ξ1, UV2ξ2〉

= 〈E11ξE11, aE12E22ξE22〉 =

〈
ξE11,

(
0 a
0 0

)
ξE22

〉
=

2∑
i,j=1

(
E11

〈
ξ,

(
0 a
0 0

)
ξ

〉
E22

)
i,j

=

2∑
i,j=1

(
E11

(
0 ψ(a)
0 0

)
E22

)
i,j

=

2∑
i,j=1

(
0 ψ(a)
0 0

)
i,j

= ψ(a).

Converse?
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Stucture of block CP maps
von Neumann algebras

Example

Let A = B = C([0, 1]), Let

h1(t) = t, h2(t) = 1 for t ∈ [0, 1]. (5)

Consider the CP map Φ : M2(A)→M2(B) defined by

Φ

(
f11 f12
f21 f22

)
=

(
h∗1 0
0 h∗2

)(
f11 f12
f21 f22

)(
h1 0
0 h2

)
=

(
h∗1f11h1 h∗1f12h2
h∗2f21h1 h∗2f22h2

)
.

Note that E1 = {f ∈ C([0, 1]) : f(0) = 0} ⊆ C([0, 1]) and E2 = C([0, 1]).
There is no bilinear adjointable contraction T : E2 → E1 such that
〈h1, fh2〉 = 〈h1, T fh2〉 for all f ∈ C([0, 1]).
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Hilbert C∗-modules
Product Systems

Definition

Let B be a C∗-algebra. An inclusion system (E, β) is a family E = (Et)t∈T
of Hilbert B-B-modules with E0 = B and a family β = (βs,t)s,t∈T of
two-sided isometries βs,t : Es+t → Es � Et such that, for all r, s, t ∈ T,

(βr,s � idEt)βr+s,t = (idEr �βs,t)βr,s+t.

It is said to be a product system if every βst is unitary.

Er+s+t Er+s � Et

Er � Es+t Er � Es � Et

βr+s,t

βr,s+t βr,s�idEt

idEr �βs,t

Vijaya Kumar U (ISIBC) August 23, 2019 24 / 37



Hilbert C∗-modules
Product Systems

Remark

If B is von Neumann algebra in the above definition, then we consider
incusion system of von Neumann B-B-modules.

Definition

Let (E, β) be an inclusion system. A family ξ� = (ξt)t∈T of vectors
ξt ∈ Et is called a unit for the inclusion system, if βs,t(ξs+t) = ξs � ξt. A
unit is called unital, if 〈ξt, ξt〉 = 1 for all t ∈ T. A unit is called generating,
if Et is spanned by images of elements bnξtn � · · · � b1ξt1b0
(ti ∈ T,

∑
ti = t, bi ∈ B) under successive applications of appropriate

mappings id�β∗s,s′ � id .
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Hilbert C∗-modules
Product Systems

Observation

Suppose (E, β) an inclusion system with a unit (unital) ξ�. Consider
φt : B → B defined by

φt(b) = 〈ξt, bξt〉 for b ∈ B.

Then as βs,t’s are two-sided isometries and ξ� is a unit, for b ∈ B we have

φt ◦ φs(b) = φt(〈ξs, bξs〉) = 〈ξt, 〈ξs, bξs〉ξt〉
= 〈ξs � ξt, b(ξs � ξt)〉 = 〈ξt+s, bξt+s〉
= φt+s(b).

That is, (φt)t∈T is a QDS (QMS).

Converse?
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Hilbert C∗-modules
Product Systems

Observation

Let φ : A → B and ψ : B → C be CP maps

φ (E, ξ), ψ  (F, ζ), ψ ◦ φ (K,κ)

ψ ◦ φ(a) = ψ(〈ξ, aξ〉) = 〈ζ, 〈ξ, aξ〉ζ〉 = 〈ξ � ζ, aξ � ζ〉.

(ψ ◦ φ (E � F, ξ � ζ)) (need not be minimal)

Thus κ 7→ ξ � ζ extends to a unique two-sided isometry K → E � F.
So K ↪→ E � F ; K = span(Aξ � ζC);
E � F = span(AξB � BζC) = span(Aξ � BζC) = span(AξB � ζC).

Stinespring representation?
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Hilbert C∗-modules
Product Systems

Observation

Let φ = (φt)t∈T be a QDS on a unital C∗-algebra B.
Let (Et, ξt) be the GNS-construction for φt.
(ξt-cyclic in Et such that φt(b) = 〈ξt, bξt〉 , E0 = B and ξ0 = 1.) Define

βs,t : Es+t → Es � Et : ξt+s 7→ ξs � ξt.

Then βs,t’s are two-sided isometries. Now

(βr,s � IEt)βr+s,t(ξr+s+t) = (βr,s � IEt)(ξr+s � ξt) = (ξr � ξs)� ξt
= ξr � (ξs � ξt) = (IEr � βs,t)(ξr � ξs+t)
= (IEr � βs,t)βr,s+t(ξr+s+t)

shows that (E, β) is an inclusion system of Hilbert B-B-module. It is
obvious to see that ξ� = (ξt) is a generating unit for (E, β).

Remark

If B is a von Neumann algebra and φ = (φt)t∈T is a normal QDS on B,
then (E, β) as defined in Observation ?? is an inclusion system of von
Neumann B-B-modules.
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Hilbert C∗-modules
Product Systems and Morphisms

Definition

For a QDS φ = (φt)t≥0 on B, the inclusion system with the generating
unit (E, β, ξ�) given in the previous observation is called the inclusion
system associated to φ.

Definition

Let (E, β) and (F, γ) be two inclusion systems. Let T = (Tt)t∈T be a
family of two-sided (bilinear) maps Tt : Et → Ft, satisfying ‖Tt‖ ≤ etk for
some k ∈ R. Then T is said to be a morphism or a weak morphism from
(E, β) to (F, γ) if γs,t’s are adjointable and

Ts+t = γ∗s,t(Ts � Tt)βs,t for all s, t ∈ T. (6)

It is said to be a strong morphism if

γs,tTs+t = (Ts � Tt)βs,t for all s, t ∈ T. (7)
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Hilbert C∗-modules
Product Systems: morphism

Tt : Et → Ft, t ≥ 0

weak strong

Es+t Fs+t Es+t Fs+t

Es � Et Fs � Ft Es � Et Fs � Ft

Ts+t

βs,t

Ts+t

βs,t γs,t

Ts�Tt

γ∗s,t

Ts�Tt
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Stucture of block CP maps

Problem

Let A,B be unital C∗-algebras and let p ∈ A, q ∈ B be projections. Let

Φ =

(
φ1 ψ
ψ∗ φ2

)
be a block CP map with respect to p and q. Let (Ei, ξi)

be GNS-representation of φi, i = 1, 2. Can we prove a theorem similar to
the above theorem ? or What is the structure of ψ in terms of (Ei, ξi)?
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Stucture of block QDS

Lemma

Let B be a unital C∗-algebra. Given two inclusion systems (Ei, βi, ξi)
associated to the CP semigroups φi = (φit), i = 1, 2 on B and a contractive
morphism T : E2 → E1, there is a block CP semigroup Φ = (Φt)t≥0 on

M2(B) such that Φt =

(
φ1t ψt
ψ∗t φ2t

)
and ψt(a) = 〈ξ1t , Tt(aξ2t )〉.
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Stucture of block QDS

Proof.

Let Φt :=

(
φ1t ψt
ψ∗t φ2t

)
, where ψt(a) := 〈ξ1t , Tt(aξ2t )〉. Then φt is CP.

Consider

Φs ◦ Φt

(
a b
c d

)
= Φs

(
φ1t (a) ψt(b)
ψ∗t (c) φ2t (d)

)
=

(
φ1s+t(a) ψs(ψt(b))
ψ∗s(ψ

∗
t (c)) φ2s+t(d)

)
.

ψs(ψt(b)) = 〈ξ1s , Tsψt(b)ξ2s 〉 = 〈ξ1s , ψt(b)Tsξ2s 〉 = 〈ξ1s , 〈ξ1t , Ttbξ2t 〉Tsξ2s 〉
= 〈ξ1t � ξ1s , Ttbξ2t � Tsξ2s 〉 = 〈ξ1t � ξ1s , b(Tt � Ts)(ξ2t � ξ2s )〉
= 〈β1t,s(ξ1t+s), b(Tt � Ts)β2t,s(ξ2t,s)〉
= 〈(ξ1t+s), bβ1∗t,s(Tt � Ts)β2t,s(ξ2t,s)〉
= 〈ξ1t+s, bTt+sξ2t+s〉
= ψt+s(b).

Conversely, (when B is a von Neumann algebra)
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Stucture of block QDS

Theorem (for a block QDS on a vN-alg B)

Let Φt =

(
φ1t ψt
ψ∗t φ2t

)
: M2(B)→M2(B) and Φ = (Φt)t≥0 be a semigroup

(on M2(B)) of block normal CP maps. Then there is a unique contractive
morphism T : E2 → E1 such that ψt(a) = 〈ξ1t , Tt(aξ2t )〉 for all a ∈ B,
t ≥ 0, where (Ei, βi, ξ�i), is the inclusion system associated to φi, i = 1, 2.

Proof.

For all t ≥ 0 we have Tt : E2 → E1, ψt(a) = 〈ξ1t , Tt(aξ2t )〉, ∀ a ∈ A.

∗ ∗ ∗ ∗ ∗
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